Formalizing the Brouwer Fixed Point Theorem in Lean

Brendan Murphy (University of Utah)

The Theorem

100 Theorems Benchmark

List of theorems tracking which have been formalized in which language.
"Benchmark" for the maturity of a mathematical formalization community, maintained by Freek Wiedijk.

Brouwer Fixed Point Theorem

(Brouwer, 1911) Let K be a nonempty, compact, convex subset of Euclidean space. Then any continuous mapping $\mathrm{f}: \mathrm{K} \rightarrow \mathrm{K}$ admits a fixed point, i.e. there is some $a \in K$ such that $f(a)=a$.

Proof (informal):

1. A nonempty compact, convex set is homeomorphic to a closed ball.
2. From a fixpoint-free $B^{n} \rightarrow B^{n}$ we cook up a retraction $r: B^{n} \rightarrow S^{n}$.
3. Categorically, r is a split epi.
4. Split epimorphisms are preserved by functors!
5. Then $r_{\star}: H^{\sim}{ }_{\star}\left(B^{n}\right) \rightarrow H^{\sim}{ }_{\star}\left(S^{n}\right)$ is a split epi. In particular it's surjective.
6. But $\mathrm{H}^{\sim}{ }_{\star}\left(\mathrm{B}^{\mathrm{n}}\right) \cong 0$ while $\mathrm{H}_{\star}{ }_{\star}\left(\mathrm{S}^{\mathrm{n}}\right) \cong$, so we obtain a contradiction!

Proof (informal):

1. A nonempty compact, convex set is homeomorphic to a closed ball.
2. From a fixpoint-free $B^{n} \rightarrow B^{n}$ we cook up a retraction $r: B^{n} \rightarrow S^{n}$.
3. Categorically, r is a split epi.
4. Split epimorphisms are preserved by functors!
5. Then $r_{\star}: H^{\sim}{ }_{\star}\left(B^{n}\right) \rightarrow H^{\sim}{ }_{\star}\left(S^{n}\right)$ is a split epi. In particular it's surjective.
6. But $\mathrm{H}^{\sim}{ }_{\star}\left(\mathrm{B}^{\mathrm{n}}\right) \cong 0$ while $\mathrm{H}_{\star}{ }_{\star}\left(\mathrm{S}^{\mathrm{n}}\right) \cong$, so we obtain a contradiction!

Convex bodies

A nonempty compact, convex set is homeomorphic to a closed ball.

Proof (informal):

1. A nonempty compact, convex set is homeomorphic to a closed ball.
2. From a fixpoint-free $B^{n} \rightarrow B^{n}$ we cook up a retraction $r: B^{n} \rightarrow S^{n}$.
3. Categorically, r is a split epi.
4. Split epimorphisms are preserved by functors!
5. Then $r_{*}: H^{\sim}{ }_{*}\left(B^{n}\right) \rightarrow H^{\sim}{ }_{*}\left(S^{n}\right)$ is a split epi. In particular it's surjective.
6. But $\mathrm{H}_{\star}{ }_{\star}\left(\mathrm{B}^{\mathrm{n}}\right) \cong 0$ while $\mathrm{H}^{\sim}{ }_{\star}\left(\mathrm{S}^{\mathrm{n}}\right) \cong$, , so we obtain a contradiction!

The retraction

From a fixpoint-free $B^{n} \rightarrow B^{n}$ we cook up a retraction $r: B^{n} \rightarrow S^{n}$.

Proof (informal):

1. A nonempty compact, convex set is homeomorphic to a closed ball.
2. From a fixpoint-free $B^{n} \rightarrow B^{n}$ we cook up a retraction $r: B^{n} \rightarrow S^{n}$.
3. Categorically, r is a split epi.
4. Split epimorphisms are preserved by functors!
5. Then $r_{\star}: H^{\sim}{ }_{\star}\left(B^{n}\right) \rightarrow H^{\sim}{ }_{\star}\left(S^{n}\right)$ is a split epi. In particular it's surjective.
6. But H^{\sim} * $\left(\mathrm{B}^{\mathrm{n}}\right) \cong 0$ while $\mathrm{H}^{\sim}{ }_{\star}\left(\mathrm{S}^{\mathrm{n}}\right) \cong$ 亿, so we obtain a contradiction!

Singular Homology

The definition

```
noncomputable
def free_complex_on_sset (R : Type*) [comm_ring R] : sSet => chain_complex (Module R) \mathbb{N :=}
    ((simplicial_object.whiskering _ _).obj (Module.free R)) >> alternating_face_map_complex
noncomputable
def singular_chain_complex (R : Type*) [comm_ring R] : Top # chain_complex (Module R) N :=
    Top.to_sSet' >> free_complex_on_sset R
noncomputable
def singular_chain_complex_of_pair (R : Type*) [comm_ring R]
    : arrow Top = chain_complex (Module R) N :=
    category_theory.functor.map_arrow (singular_chain_complex R)
    > coker_functor (chain_complex (Module R) N
noncomputable
def singular_homology (R : Type*) [comm_ring R] (n : N ) : Top = Module R :=
    singular_chain_complex R >> homology_functor _ _ n
noncomputable
def singular_homology_of_pair (R : Type*) [comm_ring R] (n : N ) : arrow Top = Module R :=
    singular_chain_complex_of_pair R >> homology_functor _ _ n
```


Design decisions

- Use custom Top.to_sSet' with "different" standard simplices
- Use a fixed commutative coefficient ring, not abelian group coefficients
- Define relative singular homology with respect to any map

Top.to_sSet'

```
def to_Top'_obj (x : simplex_category) := std_simplex R x
def topological_simplex_alt_desc ( }\textrm{n}: : simplex_category
    : {f : n > nnreal | \Sigma (i : n), f i = 1} \simeq t std_simplex \mathbb{R n := {}
def Top.to_sSet' : Top # sSet :=
colimit_adj.restricted_yoneda simplex_category.to_Top'
def Top.to_sSet_iso_to_sSet' : Top.to_sSet \cong Top.to_sSet' :=
```


Coefficients in a (commutative) ring

- Allows singular homology to be a functor into R-Mod.
- Commutativity is just needed for Module.image (this should be fixed!)
- But even if \wedge is fixed, probably still a bad design decision?!

Eilenberg-Steenrod Axioms

1. If $f, g:(X, A) \rightarrow(Y, B)$ are homotopic then the induced maps $f_{*}, g_{*}: H_{i}(X, A) \rightarrow H_{i}(Y, B)$ are equal.
2. Given an open cover $X=A \cup B$, the map $(A, A \cap B) \subseteq(X, B)$ induces an iso in homology.
3. If $X=U_{\alpha} X_{\alpha}$, the comparison map $\oplus_{\alpha} H_{i}\left(X_{\alpha}\right) \rightarrow H_{i}(X)$ is an iso.
4. For any pair (X, A), the sequence
$\ldots \rightarrow H_{i+1}(X, A) \rightarrow H_{i}(A) \rightarrow H_{i}(X) \rightarrow H_{i}(X, A) \rightarrow \ldots$ is exact.
5. $H_{i}(p t)=0$ for all $i>0$.

Eilenberg-Steenrod Axioms

1. If $f, g:(X, A) \rightarrow(Y, B)$ are homotopic then the induced maps $f_{*}, g_{*}: H_{i}(X, A) \rightarrow H_{i}(Y, B)$ are equal.
2. Given an open cover $X=A \cup B$, the map $(A, A \cap B) \subseteq(X, B)$ induces an iso in homology.
3. If $X=U_{\alpha} X_{\alpha}$, the comparison map $\oplus_{\alpha} H_{i}\left(X_{\alpha}\right) \rightarrow H_{i}(X)$ is an iso.
4. For any pair (X, A), the sequence
$\ldots \rightarrow H_{i+1}(X, A) \rightarrow H_{i}(A) \rightarrow H_{i}(X) \rightarrow H_{i}(X, A) \rightarrow \ldots$
is exact.
5. $H_{i}(p t)=0$ for all $i>0$.

Eilenberg-Steenrod Axioms

1. If $\mathrm{f}, \mathrm{g}:(\mathrm{X}, \mathrm{A}) \rightarrow(\mathrm{Y}, \mathrm{B})$ are homotopic then the induced maps $\mathrm{f}_{\star}, \mathrm{g}_{*}: H_{i}(\mathrm{X}, \mathrm{A}) \rightarrow \mathrm{H}_{\mathrm{i}}(\mathrm{Y}, \mathrm{B})$ are equal.
2. Given an open cover $X=A \cup B$, the map $(A, A \cap B) \subseteq(X, B)$ induces an iso in homology.
3. If $X=U_{\alpha} X_{\alpha}$, the comparison map $\oplus_{\alpha} H_{i}\left(X_{\alpha}\right) \rightarrow H_{i}(X)$ is an iso.
4. For any pair (X, A), the sequence
$\ldots \rightarrow H_{i+1}(X, A) \rightarrow H_{i}(A) \rightarrow H_{i}(X) \rightarrow H_{i}(X, A) \rightarrow \ldots$ is exact.
5. $H_{i}(p t)=0$ for all $i>0$.

Homotopy invariance

Possible approaches:

- Explicitly define "prism operator" (Hatcher)
- Simplicial homotopies \& Sing. Moore complex being monoidal
- Acyclic models theorem

Acyclic Models Theorem

Given a functor $\mathrm{F}: \mathrm{C} \rightarrow \mathrm{R}$-Mod, a "basis" for F is a family of "models" $\left\{X_{\lambda}\right\}_{\lambda \in \Lambda}$ and elements $b_{\lambda} \in F\left(X_{\lambda}\right)$ such that for any $Y \in \operatorname{Obj}(C)$, the family $\left\{F(f)\left(b_{\lambda}\right)\right\}_{\lambda} \in{ }_{\lambda}, f \in C(X \lambda, Y)$ is a basis for the R-module $F(Y)$.

The case we care about: $C=T o p, F=R^{\wedge}\left(\oplus \operatorname{Sing}_{i}(-)\right),\left\{\Delta^{n}\right\}_{n} \in \mathbb{N}$, and b_{n} the identity map of Δ^{n}.

The point: A natural transformation $\eta: F \rightarrow G$ is specified by the values
$a_{\lambda}=\eta_{X \lambda}\left(b_{\lambda}\right)$, with $\eta_{Y}\left(F(f)\left(b_{\lambda}\right)\right)=G(f)\left(\eta_{X \lambda}\left(b_{\lambda}\right)\right)$.

Acyclic Models Theorem

Let $\mathrm{F} .: \mathrm{C} \rightarrow \mathrm{Ch}^{\wedge}+(\mathrm{R}-\mathrm{Mod})$ be a functor where each F_{n} is equipped with a basis. Another functor $G .: C \rightarrow \mathrm{Ch}^{\wedge}+(\mathrm{R}-\mathrm{Mod})$ is called acyclic if for all $n>0$ and any model X for F_{n} we have $H_{n}(G .(X))=0$.

With this, any natural transformation $\mathrm{H}_{0}(\mathrm{~F} .(-)) \rightarrow \mathrm{H}_{0}(\mathrm{G} .(-))$ lifts to a natural transformation $\mathrm{F} . \rightarrow \mathrm{G}$, unique up to chain homotopy.

Acyclic Models Theorem

Let $\mathrm{F} .: \mathrm{C} \rightarrow \mathrm{Ch}^{\wedge}+(\mathrm{R}-\mathrm{Mod})$ be a functor where each F_{n} is equipped with a basis. Another functor G. : $\mathrm{C} \rightarrow \mathrm{Ch}^{\wedge}+(\mathrm{R}-\mathrm{Mod})$ is called acyclic if for all $n>0$ and any model X for F_{n} we have $H_{n}(G .(X))=0$.

AND $H_{n}(G .(X))=0$ for any model X for F_{n+1}.
With this, any natural transformation $H_{0}\left(\mathrm{~F}_{\mathrm{o}}(-)\right) \rightarrow \mathrm{H}_{0}(\mathrm{G} .(-))$ lifts to a natural transformation $\mathrm{F} . \rightarrow \mathrm{G}$, unique up to chain homotopy.

The extra condition was missing in Dieck's book!

Acyclic Models Theorem

Let F . be the singular chain complex functor and $\mathrm{G} .(\mathrm{X})=\mathrm{F} .(\mathrm{X} \times \mathrm{I})$.
The inclusions of X into $X \times I$ as the height 0 and 1 cross sections give natural transformations $\mathrm{X} \rightarrow \mathrm{X} \times \mathrm{I}$, which clearly induce the same map on 0th homology. For homotopy invariance we only need these maps!

Then by acyclic models we just need to show G. is acyclic wrt F ., or that the homology of the contractible spaces $\Delta^{\mathrm{n}} \times$ I vanishes in degree >0.

Acyclic Models Theorem

Also, this method gives you the Eilenberg-Zilber theorem!

Excision

Proof: Easy homological algebra + barycentric subdivision (very very annoying).

```
lemma sufficient_barycentric_lands_in_cover (R : Type) [comm_ring R] {X : Top}
    (cov : set (set X)) (cov_is_open : \forall s, s \in cov t is_open s) (hcov : Uo cov = T) (n : N)
    (C : ((singular_chain_complex R).obj X).X n)
    : \exists k : N, ((barycentric_subdivision_in_deg R n).app X) ^[k] C E bounded_by_submodule R cov n :=
lemma subcomplex_inclusion_quasi_iso_of_pseudo_projection
    {C : homological_complex (Module.{v'} R) c}
    (M : П (i : \imath), submodule R (C.X i))
    (hcompat : \forall i j, submodule.map (C.d i j) (M i) \leq M j)
    (p : C }->\mathrm{ C) (s : homotopy (11 C) p)
    (hp_eventual : \forall i x, \exists k, (p.f i)^[k] x \in M i)
    (hp : \forall i, submodule.map (p.f i) (M i) \leqM i)
    (hs : \forall i j, submodule.map (s.hom i j) (M i) \leq M j)
    : quasi_iso (Module.subcomplex_of_compatible_submodules_inclusion C M hcompat) :=
```


Excision

```
noncomputable
def barycentric_subdivision_in_deg (R : Type*) [comm_ring R]
    : П (n : N), (singular_chain_complex R >> homological_complex.eval _ _ n)
        (singular_chain_complex R >> homological_complex.eval _ _ n)
| 0 := \mathbb{1}
| (n + 1) := (singular_chain_complex_basis R (n + 1)).map_out
    (singular_chain_complex R >> homological_complex.eval _ _ (n + 1))
    (\lambda _, @cone_construction_hom R _ (Top.of (topological_simplex (n + 1)))
        (barycenter (n + 1))
        ((convex_std_simplex \mathbb{R}}(\mathrm{ fin (n + 2))).contraction (barycenter (n + 1)))
        n
        ((barycentric_subdivision_in_deg n).app (Top.of (topological_simplex (n + 1)))
            (((singular_chain_complex R).obj (Top.of (topological_simplex (n + 1)))).d
                    (n + 1) n
                (simplex_to_chain (\mathbb{1 (Top.of (topological_simplex (n + 1)))) R))))}
```


Excision

```
lemma metric.lebesgue_number_lemma {M : Type*} [pseudo_metric_space M] (hCompact : compact_space M)
    (cov : set (set M)) (cov_open : \forall s, s \in cov -> is_open s) (hcov : Uo cov = T)
    (cov_nonempty : cov.nonempty) -- if M is empty this can happen!
    : \exists \delta : nnreal, 0< \delta^(\forallS : set M, metric.diam S < \delta }->\existsU,U\in\operatorname{cov}\wedgeS\subseteqU):
lemma iterated_barycentric_subdivison_of_affine_simplex_bound_diam (R : Type) [comm_ring R]
    {\imath : Type} [fintype \imath] {D : set (\imath -> R)} (hConvex : convex R D)
    {n : N} (vertices : fin (n + 1) -> D) (k : N)
    : ((barycentric_subdivision_in_deg R n).app (Top.of D))^[k]
    (simplex_to_chain (singular_simplex_of_vertices hConvex vertices) R)
    E bounded_diam_submodule R D (((n : nnreal)/(n + 1 : nnreal))^k
    * @@metric.diam D _ (set.range vertices), metric.diam_nonneg〉) n
    п affine_submodule hConvex R n :=
```


Conclusion

By an ad-hoc inductive argument we can calculate $H_{k}\left(S^{n}\right)$!

Remaining work

- PR into mathlib \& clean up codebase
- Singular cohomology, with cup product
- Show $H_{n}\left(S^{n}\right)$ is free on [$\left.\Delta^{n}\right]$
- $H_{i}(X / A)=H_{i}(X, A)$ in nice cases
- Mayer-Vietoris
- Kunneth formula
- Simplicial/cellular homology
- Hurewicz theorem, $\pi_{\mathrm{n}}\left(\mathrm{S}^{\mathrm{n}}\right)=Z^{2}$
- Invariance of domain/dimension
- Lots and lots of work! Flip to a random page in Hatcher chapter 2, 3.

Questions

