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1 CW Complexes
The objects of study in classical homotopy theory are the homotopy types. This is not the same thing as a topological
space, or even a CW complex, but “CW complex up to homotopy”. CW complexes are spaces that admit a construction
in stages, starting with some points, then gluing on intervals via their boundary, then gluing on disks via their boundary,
and so on, then taking the union of all finite stages. In stage 𝑛 the “gluing” of 𝑛-disks onto the (𝑛−1)-skeleton𝑋𝑛−1 can
be understood categorically as taking a pushout of𝑋𝑛−1 with your family of disks ∐𝜆∈Λ𝐷

𝑛 along a family of arbitrary
continuous maps {𝑓𝜆 ∶ 𝑆𝑛 → 𝑋}𝜆∈Λ (“attaching maps”) and standard inclusions 𝑆𝑛 ↪ 𝐷𝑛. We could just have easily
defined this using (topological) simplex inclusions 𝜕Δ𝑛 ↪ Δ𝑛, for Δ𝑛 and𝐷𝑛 are convex bodies of the same dimension
and so canonically (after picking a basepoint) homeomorphic. So CW complexes are exactly the topological spaces
that can be obtained from a sequential colimit of pushouts of (coproducts of) the boundary inclusions 𝜕Δ𝑛 ↪ Δ𝑛. In
other words, they’re spaces obtained by gluing simplices together with the restriction that one may only glue along
the boundary, but the flexibility that arbitrary continuous gluings of that boundary are allowed. But combining the
“Simplicial Approximation Theorem” with the following lemma allows us to assume a CW complex is obtained from
a very, very structured kind of gluing.
Lemma 1.1. Let 𝑋 be a topological space and 𝑓, 𝑔 ∶ 𝑆𝑛−1 → 𝑋 two homotopic maps. Then the pushouts (or
“amalgamation spaces”) 𝐷𝑛 ⨿𝑓 𝑋 and 𝐷𝑛 ⨿𝑔 𝑋 are homotopy equivalent.

Proof. Let 𝐻 ∶ 𝑆𝑛−1 × 𝐼 → 𝑋 be a homotopy. The key idea is that we may use the deformation retraction of the
“cylinder”𝐷𝑛×𝐼 onto its boundary minus the top (𝐷𝑛×{0})∪(𝑆𝑛−1×𝐼) to get a deformation retraction of (𝐷𝑛×𝐼)⨿𝐻𝑋onto ((𝐷𝑛 × {0}) ∪ (𝑆𝑛−1 × 𝐼))⨿𝐻 𝑋. We have a morphism 𝐽 ∶ (𝐷𝑛 × 𝐼)⨿𝐻 𝑋 → ((𝐷𝑛 × {0}) ∪ (𝑆𝑛−1 × 𝐼))⨿𝐻 𝑋
induced by the morphism of spans

𝐷𝑛 𝑆𝑛−1 𝑋

(𝐷𝑛 × {0}) ∪ (𝑆𝑛−1 × 𝐼) 𝑆𝑛−1 × 𝐼 𝑋.

𝑓

𝐻

And in fact 𝐽 is surjective, because every point in the extra bit 𝑆𝑛−1 × (0, 1] is glued onto 𝑋 by 𝐻 . But it’s actually a
split monomorphism as well, because morphism of spans above has a left inverse

𝐷𝑛 𝑆𝑛−1 𝑋

(𝐷𝑛 × {0}) ∪ (𝑆𝑛−1 × 𝐼) 𝑆𝑛−1 × 𝐼 𝑋.

𝑓

𝐻

This means 𝐽 is actually a homeomorphism, because it is a surjection with a continuous left inverse. The punchline
is that 𝐷𝑛 ⨿𝑓 𝑋, and by symmetry 𝐷𝑛 ⨿𝑔 𝑋, are both homeomorphic to deformation retracts of the same space (and
hence are homotopy equivalent).

Exercise: Reprove Lemma 1.1 in terms of the simplicial inclusions, using the fact that Δ𝑛 deformation retracts
onto any of its “horns” Λ𝑛𝑖 (those spaces formed by removing the 𝑖th face from 𝜕Δ𝑛).
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2 The simplex category, gluing, and presheaves
Simplicial sets are a more “algebraic” or “combinatorial” way of modelling homotopy types. This has the advantage
that it transports more easily to algebraic contexts. E.g., the (1-)category of topological abelian groups is not abelian
but the (1-)category of simplicial abelian groups is! We saw above through careful analysis of CW complexes that any
homotopy type is built up from gluing together simplices along their boundaries. For CW complexes the gluing was
fairly geometric, an actual pushout in the category of topological spaces. Simplicial sets take the opposite approach:
they are formal gluings of (formal!) simplices. Before we can define simplicial sets we must discuss the (category of)
simplices from which they are glued.
Definition 2.1. The simplex category Δ has objects the finite nonempty ordinals [𝑛] = {0, 1,… , 𝑛} and a morphism
[𝑛] → [𝑚] is simply an order preserving function. The augmented simplex category Δ𝑎 is defined in the same way, but
the empty ordinal [−1] = ∅ is included.
Note thatΔ is equivalent to the category of all finite totally ordered sets. What does this have to do with actual geometric
simplices? The object [𝑛] should be understood as a representation of the geometric 𝑛-simplex Δ𝑛, and its elements
0,… , 𝑛 representing the (𝑛+1)-vertices of that simplex. As demonstrated by simplicial or singular homology, it’s often
more convenient to work with simplices that have a chosen order on their vertices (for manageably and consistently
tracking orientation); this is why we’re looking at ordered finite sets and not just finite sets1. The geometric simplex Δ𝑛
is the convex hull of its vertices 𝑒0,… , 𝑒𝑛, and this means that every function of finite sets {𝑒0,… , 𝑒𝑛} ↦ {𝑒0,… , 𝑒𝑚}has a unique extension to an affine transformation Δ𝑛 → Δ𝑚 sending vertices to vertices. Thus Δ could just as truthfully
be described as the category of geometric simplices Δ𝑛 ⊆ ℝ𝑛+1 with morphisms the affine transformations sending
vertices to vertices and preserving the standard order on those vertices.
Definition 2.2. Let

Δ𝑛 =

{

(𝑡0,… , 𝑡𝑛) ∈ ℝ𝑛+1 ∶ 𝑥𝑖 ≥ 0 for all 𝑖 and
𝑛
∑

𝑖=0
𝑡𝑖 = 1

}

be the 𝑛-dimensional “geometric simplex”. The vertices of Δ𝑛 are the standard basis vectors 𝑒0,… , 𝑒𝑛 of ℝ𝑛+1 and any
point in Δ𝑛 can be uniquely represented as a convex combination 𝑡0𝑒0 +…+ 𝑡𝑛𝑒𝑛 of them. Given an order-preserving
map 𝑓 ∶ [𝑛] → [𝑚] there is an induced continuous map 𝑓 ∶ Δ𝑛 → Δ𝑚 defined by

𝑓

( 𝑛
∑

𝑖=0
𝑡𝑖𝑒𝑖

)

=
𝑛
∑

𝑖=0
𝑡𝑖𝑒𝑓 (𝑖).

Exercise: The assignments [𝑛] ↦ Δ𝑛 and 𝑓 ↦ 𝑓 define a faithful functor Δ → 𝖳𝗈𝗉.

There are two important families of maps within Δ, the coface and codegeneracy maps.
Definition 2.3. Let 𝑛 be a positive integer. For 0 ≤ 𝑖 ≤ 𝑛 denote by 𝛿𝑛𝑖 ∶ [𝑛 − 1] → [𝑛] the unique monotone injection
which omits 𝑖 from its range. This is the 𝑖th coface map. Concretely,

𝛿𝑛𝑖 (𝑗) =

{

𝑗 if 𝑗 < 𝑖
𝑗 + 1 if 𝑗 ≥ 𝑖.

Also define 𝜎𝑛𝑖 ∶ [𝑛+1] → [𝑛] to be the unique monotone surjection with 𝜎𝑛𝑖 (𝑖) = 𝜎𝑛𝑖 (𝑖+1). This is the 𝑖th codegeneracy
map. Concretely,

𝜎𝑛𝑖 (𝑗) =

{

𝑗 if 𝑗 ≤ 𝑖
𝑗 − 1 if 𝑗 > 𝑖.

Geometrically, 𝛿𝑛𝑖 is the inclusion of the 𝑖th face of Δ𝑛 (meaning the face opposite the 𝑖th vertex) and 𝜎𝑖𝑛 is the projection
of Δ𝑛+1 onto Δ𝑛 where we collapse the edge [𝑒𝑖 𝑒𝑖+1] down to a point.

1But for those who are interested, there is a theory of unoriented “symmetric simplicial sets”
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Any monotone map 𝑓 ∶ [𝑛] → [𝑚] has a decomposition into a surjection [𝑛] ↠ [𝑘] and an injecton [𝑘] ↪ [𝑚]; this
may be easiest to see if we think of [𝑘] as the image 𝑓 with the order inherited from [𝑚] (passing to the category of
all finite nonempty totally ordered sets). Furthermore the injection [𝑘] ↪ [𝑚] can be decomposed into a composition
of coface maps, omitting elements of [𝑚] one at a time, and the surjection [𝑛] ↠ [𝑘] may be decomposed into a
composition of codegeneracy maps, squishing together elements 𝑖, 𝑖 + 1 such that 𝑓 (𝑖) = 𝑓 (𝑖 + 1) one at a time until
none remain. This tells us that every morphism in Δ is a composition of coface and codegeneracy maps. In fact there
is a normal form associated to this decomposition, obtained by repeatedly applying the “cosimplicial identites”.
Theorem 2.4. The simplex category Δ is the free category 𝖢 on a sequence of objects [0], [1],… and families of
morphisms {𝛿𝑛𝑖 ∈ Hom𝖢(𝑛 − 1, 𝑛)}𝑛≥1,0≤𝑖≤𝑛 and {𝜎𝑛𝑖 ∈ Hom𝖢(𝑛 + 1, 𝑛)}𝑛≥0,0≤𝑖≤𝑛, subject to the relations (for all 𝑛)

𝛿𝑛+1𝑗 ◦ 𝛿𝑛𝑖 = 𝛿𝑛+1𝑖 ◦ 𝛿𝑛𝑗−1 (if 𝑖 < 𝑗) (1)
𝜎𝑛+1𝑗 ◦ 𝛿𝑛+2𝑖 = 𝛿𝑛+1𝑖 ◦ 𝜎𝑛𝑗−1 (if 𝑖 < 𝑗) (2)
𝜎𝑛𝑗 ◦ 𝛿𝑛+1𝑗 = id[𝑛] (3)
𝜎𝑛𝑗 ◦ 𝛿𝑛+1𝑗+1 = id[𝑛] (4)
𝜎𝑛+1𝑗 ◦ 𝛿𝑛+2𝑖 = 𝛿𝑛+1𝑖−1 ◦ 𝜎𝑛𝑗 (if 𝑖 > 𝑗 + 1) (5)
𝜎𝑛𝑗 ◦ 𝜎𝑛+1𝑖 = 𝜎𝑛𝑖 ◦ 𝜎

𝑛+1
𝑗+1 (if 𝑖 ≤ 𝑗). (6)

We will not prove this theorem in these notes, but we will attempt to explain what these identites say in the simplex
category and explain what it means for a category to be presented by generators and relations. The equations (1) and
(2) are a commutativity condition, they express (with index shifts appropriate to the 𝛿’s and 𝜎’s) that omitting a vertex
𝑖 and then omitting/collapsing a later vertex 𝑗 is the same as first omitting/collapsing 𝑗 − 1 = 𝛿−1𝑖 (𝑗) and then omitting
𝑖. The equations (3) and (4) are perhaps the most important identities, because their categorical interpretation is that
each 𝛿 is a split monomorphism and each 𝜎 is a split epimorphism; explicitly they say that if we omit a vertex and then
collapse it with the next/previous vertex, it’s the same as doing nothing. The equation (5) can be understood as saying
“far away” omissions/collapses do not affect eachother (up to reindexing!). And finally equation (6) expresses that if
you collapse twice in a row, the order of collapses matters only in that it shifts up the indexing.

The “free category” part of the theorem is more directly relevant, because it gives an explicit description of functors
Δ → 𝖢 for any category 𝖢 (like how a presentation of a group 𝐺 tells you what group homomorphisms 𝐺 → 𝐻 are).
One interpretation of a “free structure” is exactly this kind of universal property, i.e. a free thing (“group” or “category
equipped with a sequence of objects and families of maps satisfying the cosimplicial identities”) is an initial object in
the category of things. A free group 𝐺 on generators 𝑥1,… , 𝑥𝑛 subject to relations 𝑟1,… , 𝑟𝑚 is an initial object in the
category of tuples (𝐻, 𝑦1,… , 𝑦𝑛) of groups 𝐻 and 𝐲 ∈ 𝐻𝑛 such that for each 𝑗, interpreting 𝑥𝑖 as 𝑦𝑖 in 𝑤𝑗 gives the
identity element of𝐻 ; a morphism (𝐻, 𝐲) → (𝐻 ′, 𝐳) in this category is of course a group homomorphism 𝑓 ∶ 𝐻 → 𝐻 ′

such that 𝑓 (𝑦𝑖) = 𝑧𝑖 for each 𝑖. Hence a free category on objects {𝑋𝑠}𝑠∈𝑆 and morphisms {𝑓𝜆 ∶ 𝑋𝑠 → 𝑋𝑡}𝑠,𝑡∈𝑆,𝜆∈Λ𝑠,𝑡
subject to some equations of morphisms {𝐸𝑗}𝑗∈𝐽 is an initial object in the category2 of categories that are equipped
with a chosen family of objects labelled by 𝑆 and a chosen family of morphisms labelled by the Λ𝑠,𝑠′ satisfying all
equations 𝐸𝑗 . There is also a “by hand” construction of a free category on a directed graph/quiver 𝐺, e.g. the graph
with vertices ℕ and edges labelled by the coface/codegeneracy maps. This construction is fairly simply, if 𝑣,𝑤 are
vertices in 𝐺 then a morphism 𝑣 → 𝑤 in the free category is just a path (“formal composition of edges”) from 𝑣 to 𝑤
in 𝐺. One can then quotient the set of arrows of this category by the smallest equivalence relation which contains the
equations and “respects composition” (like how a normal subgroup gives an equivalence relation which multiplication).

We might stop and ask at this point why we need the codegeneracies at all. If we’re interested in gluing together
simplices along their boundaries, surely we just need the face inclusions? It turns out that the category of simplicial
sets is much nicer when degeneracies; for example, the geometric realization of the semisimplicial set Δ1 × Δ1 is an
interval union two points, not a square! The theory without degeneracies isn’t useless, though, we obtain what are
called “semi-simplicial sets”. These are called “Δ-complexes” in Hatcher’s algebraic topology textbook.

We now return to simplicial sets, having gained an understanding of what kind of “formal simplices” we’re gluing
together. The categorical understanding of “gluing” is that it is a colimit. And vice versa, in many concrete categories
a colimit does performing some kind of concrete “gluing”. This is all there is to the definition of a simplicial set.

2Here I mean the locally small category of small categories such that etc. But in fact an initial object of this category will have the right mapping
out property with respect to locally small categories too, as any functor 𝐹 ∶ 𝖢 → 𝖣 with 𝖢 small factors through a small subcategory 𝖣′ of 𝖣;
specifically 𝖣′ is the full subcategory of 𝖣 on the objects in the image of 𝐹 .
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Definition 2.5. The category of simplicial sets 𝑠𝖲𝖾𝗍 is the free3 cocompletion of Δ. That is to say 𝑠𝖲𝖾𝗍 has all (small)
colimits, comes equipped with a functor 𝑌 ∶ Δ → 𝑠𝖲𝖾𝗍, and for any other category 𝖣 with all (small) colimits
and functors 𝐹 ∶ Δ → 𝖣 there exists a colimit preserving functor 𝐺 ∶ 𝑠𝖲𝖾𝗍 → 𝖣 equipped with an isomorphism
𝜏 ∶ 𝐹 → 𝐺 ◦ 𝑌 . Furthermore (𝐺, 𝜏) is unique in that if we have another colimit-preserving functor 𝐺′ ∶ 𝑠𝖲𝖾𝗍 → 𝖢
equipped with an isomorphism 𝜏′ ∶ 𝐹 → 𝐺′ ◦ 𝑌 then there is a unique isomorphism 𝜁 ∶ 𝐺 → 𝐺′ making the diagram

𝐺 ◦ 𝑌

𝐹 𝐺′ ◦ 𝑌

𝜁𝑌𝜏′

𝜏

commute.
Intuitively this says that an object of 𝑠𝖲𝖾𝗍 is a formal colimit of some diagram in Δ. One can construct a free cocom-
pletion in this way, but I tried to write it down once and lost two weeks working out technical details. Luckily the free
cocompletion of a small category is a recognizable, fairly simple, and extremely well behaved category. The rest of
this section will be devoted to proving the following theorem.
Theorem 2.6. Let 𝖢 be a small category and Psh(𝖢) = Fun(𝖢op, 𝖲𝖾𝗍) be the category of presheaves on 𝖢. The Yoneda
embedding 𝑦 ∶ 𝖢 → Psh(𝖢) exhibits Psh(𝖢) as the free cocompletion of 𝖢.

Most people would find my initial definition of 𝑠𝖲𝖾𝗍 a little silly. The true definition is just 𝑠𝖲𝖾𝗍 = Psh(Δ). Our presen-
tation of Δ tells us that a simplicial set can also be understood as sequence of sets {𝑋𝑛}𝑛∈ℕ equipped with morphisms
𝑠𝑛𝑖 , 𝑑

𝑛
𝑖 satisfying the simplicial identities, the categorical dual of the cosimplicial identities (because presheaves are

contravariant functors Δ → 𝖲𝖾𝗍). We will expand on this later.
One caveat with Theorem 2.6 is that, because the presheaf category is a free construction, already existing colimits

in 𝖢 will almost never be preserved under 𝑦. The proof of Theorem 2.6 boils down to the fact that any presheaf on
𝖢 can be canonically written as a colimit of representable presheaves (those in the image of the Yoneda embedding).
This may sound strange, but it’s actually just another point of view on the celebrated Yoneda lemma, which we recall
below.
Lemma 2.7. Let 𝖢 be a small category and 𝑦 ∶ 𝖢 → Psh(𝖢) the functor 𝑦(𝑥) = Hom𝖢(−, 𝑥). For any object 𝑥 of 𝖢 and
presheaf 𝑆 on 𝖢 the function 𝜑 ∶ HomPsh(𝖢)(𝑦(𝑥), 𝑆) → 𝑆(𝑥) defined by 𝜑(𝜂) = 𝜂𝑥(id𝑥) is a bijection. Furthermore,
𝜑 defines a natural isomorphism of functors 𝖢op × Psh(𝖢) → 𝖲𝖾𝗍.

For the rest of this section we use the notation 𝜑 as in this lemma and set 𝜓 = 𝜑−1.
Proof. We define an inverse 𝜓 ∶ 𝑆(𝑥) → HomPsh(𝖢)(𝑦(𝑥), 𝑆) by 𝜓(𝑠)𝑧(𝑓 ) = 𝑆(𝑓 )(𝑠). Unwrapping this a bit, for
𝑠 ∈ 𝑆(𝑥) we define a natural transformation 𝜓(𝑠) ∶ 𝑦(𝑥) → 𝑆 by setting its component on an object 𝑧 to be the
function Hom𝖢(𝑧, 𝑥) → 𝑆(𝑧) sending 𝑓 ∶ 𝑧 → 𝑥 to its action on 𝑠 under 𝑆, i.e. 𝑆(𝑓 )(𝑠). We must verify that 𝜓(𝑠) is
in fact natural for each 𝑠. So suppose we have a map 𝑔 ∶ 𝑧→ 𝑤 in 𝖢, we must check that the diagram

Hom𝖢(𝑤, 𝑥) Hom𝖢(𝑧, 𝑥)

𝑆(𝑤) 𝑆(𝑧)

𝑔∗

𝑆(𝑔)
𝜓(𝑠)𝑤 𝜓(𝑠)𝑧

commutes. By unravelling definitions and applying functoriality of 𝑆 we calculate for any 𝑓 ∈ Hom𝖢(𝑤, 𝑥) that
𝜓(𝑠)𝑧(𝑔∗(𝑓 )) = 𝜓(𝑠)𝑧(𝑓 ◦ 𝑔) = 𝑆(𝑓 ◦ 𝑔)(𝑠) = 𝑆(𝑔)(𝑆(𝑓 )(𝑠)) = 𝑆(𝑔)(𝜓(𝑠)𝑤(𝑓 )).

So 𝜓(𝑠) is natural. And for arbitrary 𝑠 ∈ 𝑆(𝑥), 𝜂 ∈ HomPsh(𝖢)(𝑦(𝑥), 𝑆), 𝑧 ∈ Obj(𝖢) and 𝑓 ∈ Hom𝖢(𝑧, 𝑥) we have
𝜑(𝜓(𝑠)) = 𝜓(𝑠)𝑥(id𝑥) = 𝑆(id𝑥)(𝑠) = id𝑆(𝑥)(𝑠) = 𝑠

𝜓(𝜑(𝜂))𝑧(𝑓 ) = 𝑆(𝑓 )(𝜑(𝜂)) = 𝑆(𝑓 )(𝜂𝑥(id𝑥))
(!)
= 𝜂𝑧(𝑦(𝑥)(𝑓 )(id𝑥)) = 𝜂𝑧(𝑓 ∗(id𝑥)) = 𝜂𝑧(𝑓 ).

3This is not quite freeness in the sense discussed above; it is about 2-initiality in an appropriate 2-category!
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The equality labelled (!) holds because of the following naturality square of 𝜂:
𝑦(𝑥)(𝑥) 𝑦(𝑥)(𝑧)

𝑆(𝑥) 𝑆(𝑧).𝑆(𝑓 )

𝜂𝑥

𝑦(𝑥)(𝑓 )

𝜂𝑧

This proves 𝜑 is a bijection. To check 𝜑 is natural it suffices to show it is natural in 𝑥 for fixed 𝑆 and natural in 𝑆
for fixed 𝑥. Fix 𝑆 and write 𝜑𝑥 for 𝜑. We must show that for any morphism 𝑎 ∶ 𝑢→ 𝑣 in 𝖢 the diagram

HomPsh(𝖢)(𝑦(𝑣), 𝑆) HomPsh(𝖢)(𝑦(𝑢), 𝑆)

𝑆(𝑣) 𝑆(𝑢)𝑆(𝑎)

𝜑𝑣

𝑦(𝑎)∗

𝜑𝑢

commutes. This is once again just unfolding definitions and using naturality, as for any 𝜂 ∶ 𝑦(𝑣) → 𝑆 we calculate
𝜑𝑢(𝑦(𝑎)∗(𝜂)) = 𝜑𝑢(𝜂 ◦ 𝑦(𝑎)) = 𝜂𝑢(𝑦(𝑎)𝑢(id𝑢)) = 𝜂𝑢(𝑎 ◦ id𝑢) = 𝜂𝑢(𝑎)
𝑆(𝑎)(𝜑𝑣(𝜂)) = 𝑆(𝑎)(𝜂𝑣(id𝑣)) = 𝜂𝑢(𝑦(𝑣)(𝑎)(id𝑣)) = 𝜂𝑢(id𝑣 ◦ 𝑎) = 𝜂𝑢(𝑎).

Now fix 𝑥 and write 𝜑𝑆 for 𝑆. Let 𝛽 ∶ 𝑆 → 𝑇 be an arbitrary natural transformation. The diagram
HomPsh(𝖢)(𝑦(𝑥), 𝑆) HomPsh(𝖢)(𝑦(𝑥), 𝑇 )

𝑆(𝑥) 𝑇 (𝑥)
𝛽𝑥

𝜑𝑆

𝛽∗

𝜑𝑇

commutes because for any 𝜂 ∶ 𝑦(𝑥) → 𝑆 we have
𝜑𝑇 (𝛽∗(𝜂)) = 𝜑𝑇 (𝛽 ◦ 𝜂) = 𝛽𝑥(𝜂𝑥(id𝑥)) = 𝛽𝑥(𝜑𝑆 (𝜂)).

So what does an isomorphism HomPsh(𝖢)(𝑦(𝑥), 𝑆) ≅ 𝑆(𝑥) have to do with writing 𝑆 as a colimit? The key point is
that naturality in the 𝑥 argument means that for any map 𝑓 ∶ 𝑧→ 𝑤 in 𝖢 and 𝑠 ∈ 𝑆(𝑤) we have

𝜑𝑧,𝑆 (𝜓𝑤,𝑆 (𝑠) ◦ 𝑦(𝑓 )) = 𝜑𝑧,𝑆 (𝑦(𝑓 )∗(𝜓𝑤,𝑆 (𝑠))) = 𝑆(𝑓 )(𝜑𝑤,𝑆 (𝜓𝑤,𝑆 (𝑠))) = 𝑆(𝑓 )(𝑠).

Hence for any 𝑡 ∈ 𝑆(𝑧), 𝑠 ∈ 𝑆(𝑤) and map 𝑓 ∶ 𝑧 → 𝑤 satisfying 𝑆(𝑓 )(𝑠) = 𝑡 there is a commutative triangle
𝑦(𝑧) 𝑦(𝑤)

𝑆.
𝜓𝑧,𝑆 (𝑡)

𝜓𝑤,𝑆 (𝑠)

𝑦(𝑓 )

These triangles suggest that 𝑆 is a cocone under a certain diagram with structure maps 𝜓𝑤,𝑆 (𝑠) ∶ 𝑦(𝑤) → 𝑆. An object
of the indexing category must know about both𝑤 and 𝑠 ∈ 𝑆(𝑤) and a morphism has to be constrained by 𝑆(𝑓 )(𝑠) = 𝑡.
Definition 2.8. Let 𝖢 be a small category and 𝑆 a presheaf on 𝖢. Define a (small) category el(𝑆)4 by

Obj(el(𝑆)) = {(𝑥, 𝑠) ∶ 𝑥 ∈ Obj(𝖢), 𝑠 ∈ 𝑆(𝑥)}
Homel(𝑆)((𝑧, 𝑡), (𝑤, 𝑠)) = {𝑓 ∈ Hom𝖢(𝑧,𝑤) ∶ 𝑆(𝑓 )(𝑠) = 𝑡}.

We set id(𝑥,𝑠) = id𝑥 and perform composition as in 𝖢. The identities are well defined because 𝑆(id𝑥)(𝑠) = 𝑠. The
composition laws are automatic, and this composition is well defined because if 𝑆(𝑓 )(𝑠) = 𝑡 and 𝑆(𝑔)(𝑡) = 𝑟 then

𝑆(𝑓 ◦ 𝑔)(𝑠) = 𝑆(𝑔)(𝑆(𝑓 )(𝑠)) = 𝑆(𝑔)(𝑡) = 𝑟.

This category comes with a forgetful functor 𝑃𝑆 ∶ el(𝑆) → 𝖢. The category el(𝑆) equipped with 𝑃𝑆 is referred to as
the category of elements of 𝑆 (in the special case 𝖢 = Δ it is sometimes called the category of simplices of 𝑆). It is
instructive to think about what happens in the case that 𝑆 is the forgetful functor of some familiar category, e.g. finite
groups (or to make 𝖢 small and not just essentially small, groups whose underlying set is hereditarily finite).

4A reader with stacky inclinations may recognize this as the grothendieck construction, specialized to presheaves of discrete groupoids (sets).
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Theorem 2.9. Let 𝖢 be a small category and 𝑆 a presheaf on 𝖢. The morphisms 𝜓𝑥,𝑆 (𝑠) ∶ 𝑦(𝑥) → 𝑆 make 𝑆 into a
colimit of the diagram 𝑦 ◦𝑃 ∶ el(𝑆) → Psh(𝖢).

Proof. We already saw that these maps assemble into a cocone by naturality of the Yoneda lemma. Suppose we have a
presheaf 𝑇 on 𝖢 and natural transformations 𝜎𝑥,𝑠 ∶ 𝑦(𝑥) → 𝑇 such that for any morphism 𝑓 ∶ (𝑧, 𝑡) → (𝑤, 𝑠) in el(𝑆),

𝑦(𝑧) 𝑦(𝑤)

𝑇
𝜎𝑧,𝑡

𝜎𝑤,𝑠

𝑦(𝑓 )

commutes. We are then required to show there is a unique natural transformation 𝛽 ∶ 𝑆 → 𝑇 making each diagram
𝑦(𝑥)

𝑆 𝑇

𝜓𝑥,𝑆 (𝑠) 𝜎𝑥,𝑠

𝛽

commute. Uniqueness is immediate, as naturality of the Yoneda lemma in the presheaf argument gives
𝛽 ◦𝜓𝑥,𝑆 (𝑠) = 𝛽∗(𝜓𝑥,𝑆 (𝑠)) = 𝜓𝑥,𝑇 (𝛽𝑥(𝑠))

and hence commutativity of the requisite triangles is equivalent to the identity 𝛽𝑥(𝑠) = 𝜑𝑥,𝑇 (𝜎𝑥,𝑠). So we just need to
check that the maps 𝛽𝑥(𝑠) = 𝜑𝑥,𝑇 (𝜎𝑥,𝑠) assemble into a natural transformation 𝑆 → 𝑇 . This means that the square

𝑆(𝑤) 𝑆(𝑧)

𝑇 (𝑤) 𝑇 (𝑧)

𝑆(𝑓 )

𝑇 (𝑓 )
𝛽𝑤 𝛽𝑧

must commute for any 𝑓 ∶ 𝑧 → 𝑤 in 𝖢, which in turn is true because for 𝑠 ∈ 𝑆(𝑤), abbreviating 𝑡 = 𝑆(𝑓 )(𝑠), we have
𝑇 (𝑓 )(𝛽𝑤(𝑠)) = 𝑇 (𝑓 )(𝜑𝑤,𝑇 (𝜎𝑤,𝑠)) = 𝜑𝑧,𝑇 (𝑦(𝑓 )∗(𝜎𝑤,𝑠)) = 𝜑𝑧,𝑇 (𝜎𝑤,𝑠 ◦ 𝑦(𝑓 )) = 𝜑𝑧,𝑇 (𝜎𝑧,𝑡) = 𝛽𝑧(𝑡) = 𝛽𝑧(𝑆(𝑓 )(𝑠)).

With Theorem 2.9 we have shown that Psh(𝖢) is generated from 𝑦(𝖢) ≃ 𝖢 under “gluing” (colimits). We now have
the tools to prove Theorem 2.6, which states that this method of gluing objects of 𝖢 together is universal. The reader
may already see how to define a colimit-preserving extension of a functor 𝐹 ∶ 𝖢 → 𝖣 using the colimit formula for
presheaves: send 𝑆 = colim(𝑦 ◦𝑃 ) to colim(𝐹 ◦𝑃 ). But in set-theoretic foundations the term colim(𝐹 ◦𝑃 ) isn’t really
meaningful; “colim(𝐹 ◦𝑃 )” is only defined up to isomorphism, not equality. We do not have a canonical choice of
colimit in 𝖣, and choosing an arbitrary one simultaneously across the proper class of presheaves 𝑆 requires a stronger
choice axiom than is in ZFC. In univalent mathematics there is no issue, since equality and isomorphism are the same
thing. In ZFC+Grothendieck universes the “class” of presheaves is only a proper class from the point of view of some
ambient inacessible cardinal 𝜅. Our presheaves are valued in 𝑉𝜅 and so there is just a set of them, to which ZFC’s
axiom of choice applies. But this noncanonical choice is still awkward, so we opt to consider all choices without bias.
However also in ZFC (or really NBG, so we can talk about classes) we can carry this argument out as long as the target
category 𝖣 has “explicitly defined” or “distinguished” colimits, hich happens in all situations we will see in these notes.

Fix a small category 𝖢, a locally small category 𝖣, and a functor 𝐹 ∶ 𝖢 → 𝖣.
Definition 2.10. A realization functor is a functor 𝐺 ∶ Psh(𝖢) → 𝖣 such that for every presheaf 𝑆 on 𝖢, 𝐺 preserves
the colimit of the diagram 𝑦 ◦𝑃𝑆 . Non-rigorously, 𝐺 is a realization functor if for every 𝑆 it satisfies the equation

𝐺(𝑆) = 𝐺
(

colim
𝑒∈el(𝑆)

𝑦(𝑃𝑆 (𝑒))
)

= colim
𝑒∈el(𝑆)

𝐺(𝑦(𝑃𝑆 (𝑒))).

Say that 𝐺 extends 𝐹 if 𝐺 ◦ 𝑦 is isomorphic to 𝐹 . In this case 𝐺 must satisfy the (non-rigorous) identity
𝐺(𝑆) = colim

𝑒∈el(𝑆)
𝐹 (𝑃𝑆 (𝑒)).
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Lemma 2.11. In sufficiently strong foundations, if 𝖣 has all small colimits then for every functor 𝐹 ∶ 𝖢 → 𝖣 there
exists a realization functor 𝐺 ∶ Psh(𝖢) → 𝖣 which extends 𝐹 .

Proof. We begin by correcting a deficiency from earlier, which was defining the category of elements as a function
Obj(Psh(𝖢)) → Obj(𝖢𝖺𝗍) instead of a functor Psh(𝖢) → 𝖢𝖺𝗍. For a morphism of presheaves 𝛼 ∶ 𝑆 → 𝑇 define
el(𝛼) ∶ el(𝑆) → el(𝑇 ) by el(𝛼)(𝑥, 𝑠) = (𝑥, 𝛼𝑥(𝑠)) on objects and el(𝛼)(𝑓 ) = 𝑓 on morphisms. This is well defined as

𝑇 (𝑓 )(𝛼𝑤(𝑠)) = 𝛼𝑧(𝑆(𝑓 )(𝑠)) = 𝛼𝑧(𝑡).

for any morphism 𝑓 ∶ (𝑧, 𝑡) → (𝑤, 𝑠). The functor laws for el(−) hold since el(id𝑆 )(𝑥, 𝑠) = (𝑥, (id𝑆 )𝑥(𝑠)) = (𝑥, 𝑠) and
el(𝛽 ◦ 𝛼)(𝑥, 𝑠) = (𝑥, (𝛽 ◦ 𝛼)𝑥(𝑠)) = (𝑥, 𝛽𝑥(𝛼𝑥(𝑠))) = el(𝛽)(𝑥, 𝛼𝑥(𝑠)) = el(𝛽)(el(𝛼)(𝑥, 𝑠)).

Also note that for any 𝛼 ∶ 𝑆 → 𝑇 we have 𝑃𝑇 ◦ el(𝛼) = 𝑃𝑆 (the functor el(𝛼) leaves the first coordinate unchanged).
By assumption we may choose for each 𝑆 a colimit 𝐴𝑆 of 𝐹 ◦𝑃𝑆 , with structure maps 𝜅𝑆,𝑒 ∶ 𝐹 (𝑃𝑆 (𝑒)) → 𝐴𝑆 .
Define a functor 𝐺 ∶ Psh(𝖢) → 𝖣 on objects by 𝐺(𝑆) = 𝐴𝑆 . For a natural transformation 𝛼 ∶ 𝑆 → 𝑇 the equality
𝑃𝑇 ◦ el(𝛼) = 𝑃𝑆 allows us to “pull back” the (𝑦 ◦𝑃𝑇 )-cocone structure on 𝑇 along el(𝛼) to a (𝑦 ◦𝑃𝑆 )-cocone structure,
the structure maps of which are 𝜅𝑇 ,el(𝛼)(𝑒) ∶ 𝐹 (𝑃𝑆 (𝑒)) → 𝐴𝑇 (for 𝑒 an object of el(𝑆)). Then since 𝐴𝑆 is an initial
cocone of 𝐹 ◦𝑃𝑆 there exists a unique morphism 𝐺(𝛼) ∶ 𝐴𝑆 → 𝐴𝑇 such that for all 𝑒 ∈ Obj(el(𝑆)) the diagram

𝐹 (𝑃𝑆 (𝑒))

𝐴𝑆 𝐴𝑇𝐺(𝛼)

𝜅𝑆,𝑒
𝜅𝑇 ,el(𝛼)(𝑒)

commutes. It is easy to verify the functor laws for𝐺 using this definition and functoriality of el(−); we leave this to the
reader. So we have defined a functor 𝐺 ∶ Psh(𝖢) → 𝖣. We prove 𝐹 ≅ 𝐺 ◦ 𝑦 and then that 𝐺 is a realization functor.

To show 𝐺 extends 𝐹 we examine the structure of the category 𝖤 = el(𝑦(𝑥)) for a general object 𝑥 of 𝖢. The key
observation is that (𝑥, id𝑥) is a terminal object of 𝖤. For any other object (𝑧, 𝑓 ) of 𝖤 we have at least into our proposed
terminal object, 𝑓 ∈ Hom𝖤((𝑧, 𝑓 ), (𝑥, id𝑥)). And an arbitrary map 𝑔 ∶ (𝑧, 𝑓 ) → (𝑥, id𝑥) must satisfy 𝑔∗(id𝑥) = 𝑓 ,
hence 𝑔 = 𝑓 . It’s a standard result that a diagram with indexing category which admits a terminal object has colimit
the image of that terminal object. In parrticular the structure map 𝜅𝑦(𝑥),(𝑥,id𝑥) ∶ 𝐹 (𝑥) → 𝐴𝑦(𝑥) must be an isomorphism.
Hence we can define a natural isomorphism 𝜏 ∶ 𝐹 → 𝐺 ◦ 𝑦 by 𝜏𝑥 = 𝜅𝑦(𝑥),(𝑥,id𝑥), as long as the square

𝐹 (𝑧) 𝐹 (𝑤)

𝐺(𝑦(𝑧)) 𝐺(𝑦(𝑤))

𝐹 (𝑓 )

𝜏𝑧
𝐺(𝑦(𝑓 ))

𝜏𝑤

commutes for each morphism 𝑓 ∶ 𝑧 → 𝑤 in 𝖢. Equivalently, 𝐺(𝑦(𝑓 )) = 𝜏𝑤 ◦𝐹 (𝑓 ) ◦ 𝜏−1𝑧 . By the definition of the
action of 𝐺 on morphisms and the equality el(𝑦(𝑓 ))(𝑧, id𝑧) = (𝑧, 𝑓 ), this is equivalent to commutativity of

𝐹 (𝑧) 𝐴𝑦(𝑤)

𝐴𝑦(𝑧) 𝐹 (𝑧) 𝐹 (𝑤),
𝜏−1𝑧 𝐹 (𝑓 )

𝜅𝑦(𝑧),(𝑧,id𝑧) 𝜏𝑤

𝜅𝑦(𝑤),(𝑧,𝑓 )

which immediately reduces to the equation 𝜅𝑦(𝑧),(𝑧,id𝑧) = 𝜏𝑤 ◦𝐹 (𝑓 ). But this equation is part of the cocone structure
on 𝐴𝑦(𝑤), specifically the commuting triangle associated to the morphism 𝑓 ∶ (𝑧, 𝑓 ) → (𝑤, id𝑤) in el(𝑦(𝑤)).

Finally with 𝜏 in hand it is easy to show 𝐺 is a realization functor. Let 𝑆 be an arbitrary presheaf. We must show
that the morphisms 𝐺(𝜓𝑥,𝑆 (𝑠)) ∶ 𝐺(𝑦(𝑥)) → 𝐺(𝑆) make 𝐺(𝑆) = 𝐴𝑆 a colimit of 𝐺 ◦ 𝑦 ◦𝑃𝑆 . It suffices to show that
this is true after transporting the cocone structure across the isomorphism 𝜏𝑃𝑆 ∶ 𝐹 ◦𝑃𝑆 → 𝐺 ◦ 𝑦 ◦𝑃𝑆 , i.e. that the
morphisms𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥 ∶ 𝐹 (𝑥) → 𝐴𝑆 make𝐴𝑆 a colimit of 𝐹 ◦𝑃𝑆 . By definition of the action of𝐺 on morphisms
and the equality el(𝜓𝑥,𝑆 (𝑠))(𝑥, id𝑥) = (𝑥, 𝜓𝑥,𝑆 (𝑠)𝑥(𝑥, id𝑥)) = (𝑥, 𝜑𝑥,𝑆 (𝜓𝑥,𝑆 (𝑠))) = (𝑥, 𝑠) we have

𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥 = 𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜅𝑦(𝑥),(𝑥,id𝑥) = 𝜅𝑆,el(𝜓𝑥,𝑆 (𝑠))(𝑥,id𝑥) = 𝜅𝑆,(𝑥,𝑠)

and so this (𝐹 ◦𝑃𝑆 )-cocone structure on 𝐴𝑆 is originally chosen one, which we know is colimiting.
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So in order to show Psh(𝖢) is the free cocompletion of 𝖢 it suffices to show that realization functors extending 𝐹
are unique up to a unique isomorphism and that they preserve all colimits. We accomplish both by recasting the notion
of a realization functor in terms of adjointness.
Definition 2.12. For any 𝐹 ∶ 𝖢 → 𝖣 the nerve of 𝐹 is the functor 𝑁(𝐹 ) ∶ 𝖣 → Psh(𝖢) defined by

𝑁(𝐹 )(𝑑)(𝑥) = Hom𝖣(𝐹 (𝑥), 𝑑).

Lemma 2.13. For any realization functor 𝐺 ∶ Psh(𝖢) → 𝖣 and isomorphism 𝜏 ∶ 𝐹 → 𝐺 ◦ 𝑦 there is an adjunction
𝐺 ⊣ 𝑁(𝐹 ) whose unit map 𝜂 ∶ IdPsh(𝖢) → 𝑁(𝐹 ) ◦𝐺 satisfies, for each presheaf 𝑆 and (𝑥, 𝑠) ∈ Obj(el(𝑆)),

(𝜂𝑆 )𝑥(𝑠) = 𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥.

Proof. For each presheaf 𝑆 on 𝖢 define 𝜂𝑆 ∶ 𝑆 → 𝑁(𝐹 )(𝐺(𝑆)) by (𝜂𝑆 )𝑥(𝑠) = 𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥. These assemble into
a natural transformation, i.e. for any morphism 𝑓 ∶ 𝑧 → 𝑤 in 𝖢 we have a commuting square

𝑆(𝑤) 𝑆(𝑧)

Hom𝖣(𝐹 (𝑤), 𝐺(𝑆)) Hom𝖣(𝐹 (𝑧), 𝐺(𝑆)).

𝑆(𝑓 )

𝐹 (𝑓 )∗
(𝜂𝑆 )𝑤 (𝜂𝑆 )𝑧

To prove this square commutes, let 𝑠 ∈ 𝑆(𝑤) be arbitrary and define 𝑡 = 𝑆(𝑓 )(𝑠). By naturality of 𝜏,
𝐹 (𝑓 )∗((𝜂𝑆 )𝑤(𝑠)) = 𝐹 (𝑓 )∗(𝐺(𝜓𝑤,𝑆 (𝑠)) ◦ 𝜏𝑤)

= 𝐺(𝜓𝑤,𝑆 (𝑠)) ◦ 𝜏𝑤 ◦𝐹 (𝑓 )
= 𝐺(𝜓𝑤,𝑆 (𝑠)) ◦𝐺(𝑦(𝑓 )) ◦ 𝜏𝑧
= 𝐺(𝜓𝑤,𝑆 (𝑠) ◦ 𝑦(𝑓 )) ◦ 𝜏𝑧
= 𝐺(𝜓𝑧,𝑆 (𝑡)) ◦ 𝜏𝑧
= (𝜂𝑆 )𝑧(𝑡)
= (𝜂𝑆 )𝑧(𝑆(𝑓 )(𝑠)).

The reader might expect us to now verify 𝜂𝑆 is natural in 𝑆 and write down a counit, but if we use the “universal arrow”
characterization of adjunctions this is unnecessary. What we do need to do to obtain an adjunction with (necessarily
natural) unit 𝑆 ↦ 𝜂𝑆 is argue that for any object 𝑑 of 𝐷 and 𝛼 ∶ 𝑆 → 𝑁(𝐹 )(𝑑) there exists a unique morphism
𝛽 ∶ 𝐺(𝑆) → 𝑑 in 𝖣 such that 𝛼 = 𝑁(𝐹 )(𝛽) ◦ 𝜂𝑆 . By calculating

(𝑁(𝐹 )(𝛽) ◦ 𝜂𝑆 )𝑥(𝑠) = 𝑁(𝐹 )(𝛽)𝑥((𝜂𝑆 )𝑥(𝑠)) = 𝛽 ◦(𝜂𝑆 )𝑥(𝑠) = 𝛽 ◦𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥

we find that a morphism 𝛽 ∶ 𝐺(𝑆) → 𝑑 satisfies 𝛼 = 𝑁(𝐹 )(𝛽) ◦ 𝜂𝑆 iff 𝛼𝑥(𝑠) = 𝛽 ◦𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥 for every object
(𝑥, 𝑠) of el(𝑆). We can push forward the (𝑦 ◦𝑃𝑆 )-cocone structure on 𝑆 along 𝛼 to get a (𝑦 ◦𝑃𝑆 )-cocone structure on
𝑁(𝐹 )(𝑑), with structure maps 𝛼 ◦𝜓𝑥,𝑆 (𝑠) ∶ 𝑦(𝑥) → 𝑁(𝐹 )(𝑑). Let 𝑎𝑥,𝑠 = 𝜑𝑥,𝑁(𝐹 )(𝑑)(𝛼 ◦𝜓𝑥,𝑆 (𝑠)), i.e. 𝑎𝑥,𝑠 = 𝛼𝑥(𝑠).Then 𝑎𝑥,𝑠 ∈ 𝑁(𝐹 )(𝑑)(𝑥), meaning 𝑎𝑥,𝑠 is a morphism 𝐹 (𝑥) → 𝑑 in 𝖣. In fact these morphisms make 𝑑 into a cocone
under 𝐹 ◦𝑃𝑆 , i.e. for any map 𝑓 ∶ (𝑧, 𝑡) → (𝑤, 𝑠) in el(𝑆) the diagram

𝐹 (𝑧) 𝐹 (𝑤)

𝑑

𝐹 (𝑓 )

𝑎𝑧,𝑡
𝑎𝑤,𝑠

commutes. This is by naturality of 𝛼 and the equation 𝑆(𝑓 )(𝑠) = 𝑡 (baked into the definition of a morphism el(𝑆)), as
𝑎𝑤,𝑠 ◦𝐹 (𝑓 ) = 𝐹 (𝑓 )∗(𝑎𝑤,𝑠) = 𝑁(𝐹 )(𝑑)(𝑓 )(𝑎𝑤,𝑠) = 𝑁(𝐹 )(𝑑)(𝑓 )(𝛼𝑤(𝑠)) = 𝛼𝑧(𝑆(𝑓 )(𝑠)) = 𝛼𝑧(𝑡) = 𝑎𝑧,𝑡.

We may transport this along 𝜏 to get the structure of a cocone under 𝐺 ◦ 𝑦 ◦𝑃𝑆 on 𝑑, with structure maps 𝑎𝑥,𝑠 ◦ 𝜏−1𝑥 .
Because 𝐺 is a realization functor, 𝐺(𝑆) is a colimit of 𝐺 ◦ 𝑦 ◦𝑃𝑠 with structure maps 𝐺(𝜓𝑥,𝑆 (𝑠)). Thus there is a
unqiue 𝛽 ∶ 𝐺(𝑆) → 𝑑 such that 𝑎𝑥,𝑠 ◦ 𝜏−1𝑥 = 𝛽 ◦𝐺(𝜓𝑥,𝑆 (𝑠)), equivalently 𝑎𝑥,𝑠 = 𝛽 ◦𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥, as desired.
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Corollary 2.14. If 𝐺 ∶ Psh(𝖢) → 𝖣 is a realization functor then there is an adjunction 𝐺 ⊣ 𝑁(𝐺 ◦ 𝑦) with unit map
𝜂 ∶ IdPsh(𝖢) → 𝑁(𝐺 ◦ 𝑦) ◦𝐺 satisfying (𝜂𝑆 )𝑥(𝑠) = 𝐺(𝜓𝑥,𝑆 (𝑠)). In particular realization functors preserve all colimits.

Proof. Apply Lemma 2.13 with 𝜏 = id𝐺 ◦ 𝑦.
A funny implication of Corollary 2.14 is that there is no difference between “realization functors” Psh(𝖢) → 𝖣,

colimit preserving functors Psh(𝖢) → 𝖣, and left adjoints Psh(𝖢) → 𝖣. With this we finally prove Theorem 2.6.
Proof. Let 𝖣 be a cocomplete category and 𝐹 ∶ 𝖢 → 𝖣 any functor. Existence of a colimit-preserving functor
Psh(𝖢) → 𝖣 extending 𝐹 is immediate from Lemmas 2.11 and Lemma 2.13. Suppose 𝐺,𝐺′ ∶ Psh(𝖢) → 𝖣 preserve
all colimits and we have 𝜏 ∶ 𝐹 ≅ 𝐺 ◦ 𝑦, 𝜏′ ∶ 𝐹 ≅ 𝐺′ ◦ 𝑦. Then by Lemma 2.13 we have adjunctions 𝐺 ⊣ 𝑁(𝐹 ) and
𝐺′ ⊣ 𝑁(𝐹 ) with unit maps 𝜂 ∶ IdPsh(𝖢) → 𝑁(𝐹 ) ◦𝐺 and 𝜂′ ∶ IdPsh(𝖢) → 𝑁(𝐹 ) ◦𝐺′ such that

(𝜂𝑆 )𝑥(𝑠) = 𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥
(𝜂′𝑆 )𝑥(𝑠) = 𝐺′(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏′𝑥

for each presheaf 𝑆 on 𝖢 and (𝑥, 𝑠) ∈ Obj(el(𝑆)). By uniqueness of left adjoints there is a unique isomorphism
𝜁 ∶ 𝐺 → 𝐺′ such that 𝜂′ = 𝑁(𝐹 )𝜁 ◦ 𝜂. For any presheaf 𝑆 on 𝖢 and (𝑥, 𝑠) ∈ Obj(el(𝑆)) we may calculate

((𝑁(𝐹 )𝜁 ◦ 𝜂)𝑆 )𝑥(𝑠) = ((𝑁(𝐹 )𝜁 )𝑆 )𝑥((𝜂𝑆 )𝑥(𝑠)) = 𝑁(𝐹 )(𝜁𝑆 )𝑥((𝜂𝑆 )𝑥(𝑠)) = 𝜁𝑆 ◦(𝜂𝑆 )𝑥(𝑠) = 𝜁𝑆 ◦𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥.

So an isomorphism 𝜁 ∶ 𝐺 → 𝐺′ satisfies 𝜂′ = 𝑁(𝐹 )𝜁 ◦ 𝜂 iff 𝐺′(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏′𝑥 = 𝜁𝑆 ◦𝐺(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏𝑥 for each presheaf
𝑆 on 𝖢 and (𝑥, 𝑠) ∈ Obj(el(𝑆)). Additionally 𝜁𝑆 ◦𝐺(𝜓𝑥,𝑆 (𝑠)) = 𝐺′(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜁𝑦(𝑥), so 𝜁 is unique such that

𝐺′(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜏′𝑥 = 𝐺′(𝜓𝑥,𝑆 (𝑠)) ◦ 𝜁𝑦(𝑥) ◦ 𝜏𝑥

for every presheaf 𝑆 on 𝖢 and (𝑥, 𝑠) ∈ Obj(el(𝑆)). Taking 𝑆 = 𝑦(𝑥) and 𝑠 = id𝑥 this reduces to 𝜏′𝑥 = 𝜁𝑦(𝑥) ◦ 𝜏𝑥, and
conversely 𝜏′𝑥 = 𝜁𝑦(𝑥) ◦ 𝜏𝑥 implies the general case. Hence there is a unique iso 𝜁 ∶ 𝐺 → 𝐺′ with 𝜏′ = 𝜁𝑦 ◦ 𝜏.

We finish the section by proving that any slice of a presheaf category is still a presheaf category. This enables us to
argue by “base change”; the reader who has learned algebraic geometry understands how useful this is. Hopefully this
elucidates why we’re spending so much time on general presheaf categories if our ultimate interest is simplicial sets.
Lemma 2.15. Let 𝖢 be a small category and 𝑥 an object of 𝖢. Then there is an isomorphism of categories between
el(𝑦(𝑥)) and the slice category 𝐶∕𝑥 which commutes with their respective projections down to 𝐶 .
Furthermore, for any presheaf 𝑆 on 𝖢 there is an equivalence of categories Psh(el(𝑆)) ≃ Psh(𝖢)∕𝑆 such that the
composition el(𝑆) ↪ Psh(el(𝑆)) → Psh(𝖢)∕𝑆 is isomorphic to the cocone structure of 𝑆 over 𝑃𝑆 ◦ 𝑦.5

Proof. The isomorphism el(𝑦(𝑥)) ≅ 𝐶∕𝑥 is so simple it might in fact be an equality (depending on how you define
the slice category). An object (𝑧, 𝑡) of el(𝑦(𝑥)) just corresponds to the object 𝑡 ∶ 𝑧 → 𝑥 of 𝖢∕𝑥. Morphisms are the
identified under this correspondence because if we have 𝑠 ∶ 𝑧 → 𝑥 and 𝑡 ∶ 𝑤 → 𝑥, a map 𝑓 ∶ 𝑧 → 𝑤 defines a
morphism (𝑧, 𝑡) → (𝑤, 𝑠) iff 𝑠 ◦ 𝑓 = 𝑡 iff it defines a map 𝑠→ 𝑡 in the slice category.

Now let 𝑆 be a presheaf on 𝖢. Let 𝐹 ∶ el(𝑆) → Psh(𝖢)∕𝑆 be the cocone structure of 𝑆 over 𝑦 ◦𝑃𝑆 , so its value on
an object (𝑥, 𝑠) is the object 𝜓(𝑠) ∶ 𝑦(𝑥) → 𝑆 in the slice category and it leaves morphisms unchanged. By the results
of this section we have an adjunction 𝐺 ⊣ 𝑁(𝐹 ) such that 𝐹 ≅ 𝐺 ◦ 𝑦. We prove that 𝐺 is an equivalence by showing
it is fully faithful and essentially surjective (it follows from this that 𝑁(𝐹 ) is a quasi-inverse and the unit/counit of the
adjunction 𝐺 ⊣ 𝑁(𝐹 ) are isomorphisms). In fact, we’re first going to establish 𝐺 is essentially surjective assuming
it is fully faithful. Let 𝐸 be the essential image of 𝐺 and 𝑖 ∶ 𝐸 ↪ Psh(𝖢)∕𝑆 the inclusion. Then 𝐺 factors through
𝑖 to give an equivalence Psh(el(𝑆)) → 𝐸, and so in particular 𝐸 has all colimits and its inclusion 𝑖 preserves them.
Because colimits in slice categories are computed as in the original category, every object of Psh(𝖢)∕𝑆 is a colimit of
representable presheaves (equipped with structure maps down to 𝑆), and hence to show 𝐺 is essentially surjective it
suffices to show 𝐸 contains all objects of the form 𝑦(𝑥)

𝜈
←←←←←←→ 𝑆 for 𝑥 an object of 𝖢. But an object of this form lies in the

image of 𝐹 , which we know is contained in 𝐸.
5For a diagram 𝐿 ∶ 𝖩 → 𝖣 the structure of a cocone over 𝐿 on an object 𝑑 of 𝖣 is the same thing as a lift of 𝐿 to 𝐷∕𝑑.
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Now we must show 𝐺 is fully faithful, i.e. that its action 𝜇𝐴,𝐵 ∶ HomPsh(el(𝑆))(𝐴,𝐵) → HomPsh(𝖢)∕𝑆 (𝐺(𝐴), 𝐺(𝐵))is bijective for any presheaves 𝐴,𝐵 on el(𝑆). For any morphisms 𝛼 ∶ 𝐴 → 𝐴′, 𝛽 ∶ 𝐵 → 𝐵′ and 𝛾 ∶ 𝐴′ → 𝐵 there is
an evident equality 𝐺(𝛽 ◦ 𝛾 ◦ 𝛼) = 𝐺(𝛽) ◦𝐺(𝛾) ◦𝐺(𝛼), meaning we have a naturality square for 𝜇

HomPsh(el(𝑆))(𝐴′, 𝐵) HomPsh(el(𝑆))(𝐴,𝐵′)

HomPsh(𝖢)∕𝑆 (𝐺(𝐴′), 𝐺(𝐵)) HomPsh(𝖢)∕𝑆 (𝐺(𝐴), 𝐺(𝐵′)).

Hom(𝛼,𝛽)

Hom(𝐺(𝛼),𝐺(𝛽))

𝜇𝐴′ ,𝐵 𝜇𝐴,𝐵′

It suffices to show each “partially applied” 𝜇−,𝐵 is an isomorphism HomPsh(el(𝑆))(−, 𝐵) ≅ HomPsh(𝖢)∕𝑆 (𝐺(−), 𝐺(𝐵)).Because the contravariant Hom-functor preserves limits (with domain the opposite category, i.e. it sends colimits
to limits) and 𝐺 preserves colimits, both the domain and codomain of 𝜇−,𝐵 are limit preserving functors. The full
subcategory of Psh(el(𝑆))op on objects𝐴 such that 𝜇𝐴,𝐵 is an isomorphism is closed under limits in Psh(el(𝑆))op, since
naturality of 𝜇−,𝐵 and the fact that the functors it goes between both preserve limits imply that 𝜇lim𝑖 𝐴𝑖,𝐵 = lim𝑖 𝜇𝐴𝑖,𝐵 ,
and a limit of isomorphisms is an isomorphism. But Psh(el(𝑆)) is generated under colimits by representable functors,
so Psh(el(𝑆))op is generated under limits by the same, and hence it suffices to show 𝜇𝑦(𝑒),𝐵 is an isomorphism for any
object 𝑒 of el(𝑆). Now we play the same game and change our goal to proving that each natural transformation 𝜇𝑦(𝑒),− is
an isomorphism, and similarly to before if we can argue that its domain and codomain both preserve colimits we reduce
to showing that just the 𝜇𝑦(𝑒1),𝑦(𝑒2) is an isomorphism. This time we can’t appeal to a general property of the covariant
Hom functor, since it will not always preserve colimits. However the yoneda lemma tells us that HomPsh(el(𝑆))(𝑦(𝑒),−)is isomorphic to the functor of evaluation at 𝑒, which preserves colimits. But we also know 𝐺(𝑦(𝑒)) ≅ 𝐹 (𝑒), and
𝐺 preserves colimits, so for HomPsh(𝖢)∕𝑆 (𝐺(𝑦(𝑒)), 𝐺(−)) to preserve colimits it suffices for HomPsh(𝖢)∕𝑆 (𝐹 (𝑒),−) to
preserve colimits. Let 𝑒 = (𝑥, 𝑠) and define 𝑈 ∶ Psh(𝖢)∕𝑆 → Psh(𝖢) to be the forgetful functor. Similarly to how 𝐺
being a functor makes 𝜇 a natural transformation, the square

HomPsh(𝖢)∕𝑆

(

𝐹 (𝑒), 𝑇
𝛼
←←←←←←→ 𝑆

)

HomPsh(𝖢)∕𝑆 (𝐹 (𝑒), 𝑆)

HomPsh(𝖢)(𝑦(𝑥), 𝑇 ) HomPsh(𝖢)(𝑦(𝑥), 𝑆).

𝛼∗

𝛼∗

commutes. In fact it is a cartesian square, since HomPsh(𝖢)∕𝑆 (𝐹 (𝑒), 𝑆) = {𝜓(𝑠)} and HomPsh(𝖢)∕𝑆

(

𝐹 (𝑒), 𝑇
𝛼
←←←←←←→ 𝑆

)

is defined to be the set of all 𝜎 ∶ 𝑦(𝑥) → 𝑇 such that 𝛼∗(𝜎) = 𝜓(𝑠). The conclusion that HomPsh(𝖢)∕𝑆 (𝐹 (𝑒),−)preserves colimits then follows from three facts: the left hand morphism in our cartesian square is the component of a
natural transformation HomPsh(𝖢)∕𝑆 (𝐹 (𝑒),−) ↪ HomPsh(𝖢)(𝑦(𝑥), 𝑈 (−)) at 𝑇 𝛼

←←←←←←→ 𝑆, the functor HomPsh(𝖢)(𝑦(𝑥), 𝑈 (−))
preserves colimits (since both 𝑈 and evaluation at 𝑥 do), and colimits in 𝖲𝖾𝗍 are pullback stable. This last term means
that for any morphism 𝑓 ∶ 𝑋 → 𝑌 of sets, the pullback functor −×𝑌 𝑋 ∶ 𝖲𝖾𝗍 → 𝖲𝖾𝗍 preserves colimits. So due to the
various universal properties at play, the functor HomPsh(𝖢)∕𝑆

(

𝐹 (𝑒), 𝑇
𝛼
←←←←←←→ 𝑆

)

must preserve colimits.
Lastly we must verify 𝜇𝑦(𝑒),𝑦(𝑒′) is an isomorphism for all objects 𝑒, 𝑒′ of el(𝑆). Because 𝐺 ◦ 𝑦 ≅ 𝐹 we reduce to

checking that 𝐹 is fully faithful. Let 𝑒 = (𝑧, 𝑡) and 𝑒′ = (𝑤, 𝑠) be objects of el(𝑆). We have a commutative square
Homel(𝑆)(𝑒, 𝑒′) HomPsh(𝖢)∕𝑆 (𝐹 (𝑒), 𝐹 (𝑒′))

Hom𝖢(𝑧,𝑤) Hom𝖢(𝑦(𝑧), 𝑦(𝑤))

where the vertical maps are subset inclusions, the top map is the action of 𝐹 , and the bottom map is the action of 𝑦. We
could also view the vertical maps as the actions of 𝑃𝑆 and of 𝑈 , from which perspective commutativity of this diagram
holds because 𝑈 ◦𝐹 = 𝑦 ◦𝑃𝑆 . The bottom map is an isomorphism because the yoneda embedding is fully faithful,
and so the top map is just the restriction of an isomorphism to certain subsets. Thus in order to show 𝐹 is fully faithful
it suffices to show that a map 𝑓 ∶ 𝑧→ 𝑤 satisfies 𝑓 ∈ Homel(𝑆)(𝑒, 𝑒′) if and only if 𝑦(𝑓 ) ∈ HomPsh(𝖢)∕𝑆 (𝐹 (𝑒), 𝐹 (𝑒′)).Unravelling definitions this means 𝑆(𝑓 )(𝑠) = 𝑡 iff 𝜓𝑤,𝑆 (𝑠) ◦ 𝑦(𝑓 ) = 𝜓𝑧,𝑆 (𝑡). But this is something we’ve already used
frequently, it’s obvious from the definition of 𝜑−,𝑆 (and the fact 𝜑 is an isomorphism).
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3 Examples of simplicial sets
Lemma 2.13 is a powerful tool in understanding simplicial sets. It makes it incredibly easy to define an adjunction
between simplicial sets and some other category 𝖢, you simply need a functor Δ → 𝖢. This construction is crucial to
understanding simplicial sets, and many important families of simplicial sets arise from adjunctions like this. Perhaps
the most important adjunction of this kind, one which the reader has certainly seen before in disguise and which is the
source of the term “realization”, is the one induced by the functor Δ → 𝖳𝗈𝗉 in Definition 2.2.
Definition 3.1. The singular simplicial set of a topological space 𝑋 is Sing(𝑋)𝑛 = Hom𝖳𝗈𝗉(Δ𝑛, 𝑋). This has the
structure of a functor as it is the nerve of the geometric simplex functor Δ → 𝖳𝗈𝗉. The geometric realization of a
simplicial set 𝑆 is defined by |𝑆| = colim

𝜎∈𝓁(𝑆)
Δ𝑛. The colimit here is taken over the category el(𝑆) from definition 2.8,

i.e. |𝑆| is a realization functor extending the geometric simplex functor. But note that 𝖳𝗈𝗉 has an explicit choice of
colimits, some sort of quotient space of a disjoint union space, so this | ∙ | thing really is a single well defined functor.

The functor Sing occurs implicitly in the definition of singular homology, as the 𝑛th chain group of 𝑋 is just the
free abelian group on Sing(𝑋)𝑛. And furthermore, the differential of the singular chain complex is an alternating sum
of the face maps of Sing(𝑋)! Note that the set Sing(𝑋) is massive, for essentially any space𝑋. The only simplicial sets
we really know of at this point are the standard simplices Δ[𝑛], i.e. the representable functors 𝑦([𝑛]), which are finite
in each degree and generated under the face and degneracy maps by finitely many simplices in total. On the other hand
if 𝑋 is a manifold or a CW complex of positive dimension then the set of maps Δ0 → 𝑋 will be uncountable (it is in
bijection with the underlying set of 𝑋). This is sort of a reflection of our original frustration with topological spaces:
from the perspective of simplicial sets or other combinatorial models of homotopy types they have an enormous amount
of redundant data.

The geometric realization functor seems incredibly opaque, but it can be surprisingly simple to calculate in practice.
Most simplicial sets, even “small” ones, have infinitely many simplices, so the definition seems somewhat intractible
for the purpose of actual computation. But because geometric realization is a left adjoint we know it preserves all
colimits, and we know that the geometric realization of Δ[𝑛] can be canonically identified with Δ𝑛. So if we have a
“presentation” for a simplicial set as a finite colimit (or just simple to undestand colimit) of standard simplices then we
get a description of its geometric realization as the same colimit but taken in 𝖳𝗈𝗉. To illustrate this point we discuss
two important families of simplicial sets and calculate their geometric realization. These families are motivated by
simple geometric examples, and the presentation we give of them makes it clear their geometric realizations are in fact
the topological spaces which model those geometric objects.
Definition 3.2. A simplicial subset of a simplicial set 𝑇 is a sequence of sets {𝑆𝑛}∞𝑛=0 such that 𝑆𝑛 ⊆ 𝑇𝑛 for each 𝑛 and
𝑇 (𝑓 )(𝑆𝑛) ⊆ 𝑆𝑚 for any morphism 𝑓 ∶ [𝑚] → [𝑛] in the simplex category (it suffices that this condition hold when 𝑓
is a coface or codegeneracy map). The inclusions 𝑆𝑛 ⊆ 𝑇𝑛 assemble into a monomorphism 𝑆 ↪ 𝑇 in 𝑠𝖲𝖾𝗍.
Definition 3.3. For any 𝑛 define a simplicial subset 𝜕Δ[𝑛] of Δ[𝑛] by the formula

(𝜕Δ[𝑛])𝑚 = {𝑓 ∈ Δ[𝑛]𝑚 ∣ 𝑓 is not surjective}.
To check that this is well defined we must show that for any 𝑔 ∶ [𝓁] → [𝑘] we have 𝑔∗((𝜕Δ[𝑛])𝑘) ⊆ (𝜕Δ[𝑛])𝓁 . But this
is clear, because if 𝑓 ◦ 𝑔 is surjective then 𝑓 must be as well.

Additionally, for any 0 ≤ 𝑖 ≤ 𝑛 define the 𝑖th “horn” of Δ[𝑛] by
(Λ𝑛𝑖 )𝑚 = {𝛼 ∈ Δ[𝑛]𝑚 ∣ [𝑛] ⊈ (𝛼([𝑚]) ∪ {𝑖})}.

The condition [𝑛] ⊈ (𝛼([𝑚])∪{𝑖}) says that 𝛼 must omit some vertex other than the 𝑖th, i.e. that 𝛼 factors through some
coface map 𝛿𝑗 ∶ [𝑛 − 1] → [𝑛] for 𝑗 ≠ 𝑖. So geometrically this is saying Λ𝑛𝑖 is the union of all faces of Δ[𝑛] except the
𝑖th. This is a simplicial subset for similar reasons to 𝜕Δ[𝑛].
Lemma 3.4. Let 𝖢 be a small category in which every map factors as a split epimorphism followed by a monomor-
phism. Suppose 𝑆 is a presheaf on 𝖢 which admits a monomorphism into a representable presheaf on 𝖢. Define 
to be the full subcategory of el(𝑆) on pairs (𝑤, 𝑠) such that 𝜓𝑤,𝑆 (𝑠) is a monomorphism. Then  is cofinal in el(𝑆).
Informally, 𝑆 is the colimit of its representable subfunctors.
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Proof. Let 𝑖 ∶ 𝑆 ↪ 𝑦(𝑥) be a monomorphism. Cofinality says that every object of el(𝑆) admits a map into some object
of , and that all choices of maps are related in a suitable way. Let 𝑒 = (𝑧, 𝑡) be any object of el(𝑆) and define 𝑒to be the full subcategory of  on objects 𝑒′ = (𝑤, 𝑠) such that 𝜓𝑧,𝑆 (𝑡) factors through 𝜓𝑤,𝑆 (𝑠). Note that if 𝑒′ ∈ 𝑒then there is a unique morphism 𝑓 ∶ 𝑧 → 𝑤 such that 𝜓𝑧,𝑆 (𝑡) = 𝜓𝑤,𝑆 (𝑠) ◦ 𝑦(𝑓 ), since 𝜓𝑤,𝑆 (𝑠) is a monomorphism
(and 𝑦 is fully faithful). And 𝜓𝑧,𝑆 (𝑡) = 𝜓𝑤,𝑆 (𝑠) ◦ 𝑦(𝑓 ) is equivalent to 𝑆(𝑓 )(𝑠) = 𝑡, so if 𝑒′ ∈ 𝑒 there exists a unique
morphism 𝑒 → 𝑒′. We argue that 𝑒 has an initial object.

Since 𝑦 is fully faithful we can write 𝑖 ◦𝜓𝑧,𝑆 (𝑡) = 𝑦(𝑓 ) for a unique map 𝑓 ∶ 𝑧 → 𝑥 in 𝖢. By assumption, 𝑓 admits
a factorization 𝑓 = 𝑗 ◦ 𝑝 where 𝑝 ∶ 𝑧 → 𝑤 is split epic and 𝑗 ∶ 𝑤 → 𝑥 is monic. Let 𝑎 ∶ 𝑤 → 𝑧 be a section of 𝑝 and
define 𝑠 = 𝑆(𝑎)(𝑡). Then 𝜓𝑤,𝑆 (𝑠) = 𝜓𝑧,𝑆 (𝑡) ◦ 𝑦(𝑎). This implies

𝑖 ◦𝜓𝑤,𝑆 (𝑠) = 𝑖 ◦𝜓𝑧,𝑆 (𝑡) ◦ 𝑦(𝑎) = 𝑦(𝑓 ) ◦ 𝑦(𝑎) = 𝑦(𝑓 ◦ 𝑎) = 𝑦(𝑗 ◦ 𝑝 ◦ 𝑎) = 𝑦(𝑗)

and in particular 𝑖 ◦𝜓𝑤,𝑆 (𝑠) is a monomorphism. Hence 𝜓𝑤,𝑆 (𝑠) is a monomorphism, i.e. (𝑤, 𝑠) ∈ . To show
(𝑤, 𝑠) ∈ 𝑒 we prove 𝜓𝑧,𝑆 (𝑡) = 𝜓𝑤,𝑆 (𝑠) ◦ 𝑦(𝑝). We can check this after postcomposing with 𝑖 since 𝑖 is monic, and

𝑖 ◦𝜓𝑤,𝑆 (𝑠) ◦ 𝑦(𝑝) = 𝑦(𝑗) ◦ 𝑦(𝑝) = 𝑦(𝑓 ) = 𝑖 ◦𝜓𝑧,𝑆 (𝑡)

so (𝑤, 𝑠) ∈ 𝑒. We claim that (𝑤, 𝑠) is initial. Since every morphism in  is monic it suffices to show (𝑤, 𝑠) admits
some map to any other object (𝑣, 𝑟) of 𝑒, uniqueness is immediate. Let 𝑓 ∶ 𝑧 → 𝑤 be the unique morphism satisfying
𝑆(𝑓 )(𝑟) = 𝑡. Then

𝑆(𝑓 ◦ 𝑎)(𝑟) = 𝑆(𝑎)(𝑆(𝑓 )(𝑟)) = 𝑆(𝑎)(𝑡) = 𝑠
which means 𝑓 ◦ 𝑎 defines a map (𝑤, 𝑠) → (𝑣, 𝑟) in el(𝑆), as desired.

We leave verification of cofinality using this property of 𝑒 to the reader.
Lemma 3.4 gives us an easy description of all simplicial subsets of the standard simplices, and of their geometric
realizations. If 𝑖 ∶ 𝑆 ↪ Δ[𝑛] is a monomorphism then representable subfunctors of 𝑆 are the same thing (under
postcomposition with 𝑖) as representable subfunctors of Δ[𝑛] which factor through 𝑖. But by the yoneda lemma, rep-
resentable subfunctors of Δ[𝑛] are really the same thing as injections into [𝑛] in the simplex category, or even more
concretely the data of 𝑆 is a collection of faces (of any lower dimension) of the 𝑛-simplex. Furthermore since 𝑆 is a
functor and compositions of injective maps are injective, any face of a simplex in this collection must still lie in the
collection. But this data, a collection of faces closed under taking further faces, is that of an abstract simplicial complex
with (ordered) vertices [𝑛]! On the other hand, if we have an abstract simplicial complex 𝐿 ⊆ 2[𝑛] then we can define
a simplicial subset 𝐿′ of Δ[𝑛] by

𝐿′
𝑚 = {𝜎 ∈ Δ[𝑛]𝑚 ∶ im 𝜎 ∈ 𝐿}.

Evidently our simplicial subsets 𝜕Δ[𝑛] and Λ𝑛𝑖 are of this form, where𝐿 is the simplicial complex defining the boundary
of an 𝑛-simplex or the 𝑖th horn of an 𝑛-simplex. In fact, suppose we have a simplicial complex 𝐿 ⊆ 2[𝑛] and view it as a
poset (category). For any element 𝜎 ∈ 𝐿 we can uniquely write 𝜎 = {𝑖0, 𝑖1,… , 𝑖𝑚} where 0 ≤ 𝑖0 < 𝑖1 <… < 𝑖𝑚 ≤ 𝑛
and the 𝑖𝑗 define a morphism 𝐹 (𝜎) ∶ [𝑚] → [𝑛] in the simplex category (geometrically, 𝜎 is a face of the 𝑛-simplex
and embedding the 𝑚-simplex as that face). Evidently 𝐹 (𝜎) ∈ 𝐿′

𝑚, since im𝐹 (𝜎) = 𝜎. And since 𝐹 (𝜎) is an injection
we have ([𝑚], 𝐹 (𝜎)) ∈ , where  ⊆ el(𝐿′) is the subcategory from Lemma 3.4. Furthermore if 𝜎 ⊆ 𝜏 then 𝐹 (𝜏)
factors through 𝐹 (𝜎) (the formula is awkward to write down, but intuitively we’re just saying you can include 𝜎 into 𝜏
and then 𝜏 into Δ[𝑛]). Thus 𝐹 defines a functor 𝐿 → , and in fact an isomorphism (we can write down an inverse
 → 𝐿 on objects by sending ([𝑘], 𝜎) to im 𝜎, and if 𝑓 factors through 𝑔 we have im 𝑓 ⊆ im 𝑔, so this assignment
is monotone/functorial). Finally within the poset 𝐿 we have a cofinal poset consisting of the maximal faces and their
pairwise intersections (since 𝐿 is not directed we need the pairwise intersections for cofinality). The point of this is
that from a simplicial subset 𝑆 of Δ[𝑛] we can explicitly define a simplicial complex 𝐿 and write down 𝑆 as a finite
colimits of representable functors using𝐿; furthermore, since geometric realization commutes with colimits, |𝑆| is just
the geometric simplex complex 𝐿! Or even more precisely, the geometric realization of 𝑖 ∶ 𝑆 ↪ Δ[𝑛] is isomorphic
in the arrow category of topological spaces to the closed subset inclusion of 𝐿 as a geometric subcomplex of Δ𝑛.
Corollary 3.5. If 𝑛 > 1 then we have a coequalizer diagram

∐

0≤𝑖<𝑗≤𝑛
Δ[𝑛 − 2]

∐

0≤𝑘≤𝑛
Δ[𝑛 − 1] 𝜕Δ[𝑛]𝑝𝑓

𝑔

in which 𝑝 is induced by the face maps 𝑦(𝛿𝑛𝑘) ∶ Δ[𝑛−1] → Δ[𝑛] and on the (𝑖, 𝑗)th copy of Δ[𝑛−2] the map 𝑓 includes
into the 𝑖th copy of Δ[𝑛 − 1] via 𝛿𝑛−1𝑗−1 and 𝑔 includes into the 𝑗th copy of 𝛿[𝑛 − 1] via 𝛿𝑛−1𝑖 .
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Corollary 3.6. If 0 ≤ 𝓁 ≤ 𝑛 and 𝑛 > 1 then we have a coequalizer diagram

∐

0≤𝑖<𝑗≤𝑛
Δ[𝑛 − 2]

∐

0≤𝑖≤𝑛
𝑖≠𝑘

Δ[𝑛 − 1] Λ𝑛𝓁

in which all maps are the same as in Lemma 3.5, just with restricted codomain.

Hopefully this discussion convinces the reader that simplicial sets have some connection to more concrete geometric
objects (finite simplicial complexes) and that, although defined very abstractly, the geometric realization of a simplex
can often be computed in a reasonable way.

Interlude: Stuff I meant to have mentioned already
The definition of a simplicial set as a functor Δop → 𝖲𝖾𝗍 has an obvious generalization to categories other than 𝖲𝖾𝗍.
Definition 3.7. Let 𝖢 be a category. The category of simplicial objects in 𝖢 is 𝑠𝖢 = Fun(Δop,𝖢), i.e. a simplicial
object in 𝖢 is a functor Δ𝑜𝑝 → 𝖢. For a simplicial object 𝑋 we often write 𝑋𝑛 to abbreviate 𝑋([𝑛]).
Due to Theorem 2.4 we can equivalently think of simplicial objects as diagrams of the form

⋯ 𝑋2 𝑋1 𝑋0

which satisfy the formal duals of the cosimplicial identities, i.e. the simplicial identities
𝑑𝑛𝑖 ◦ 𝑑𝑛+1𝑗 = 𝑑𝑛𝑗−1 ◦ 𝑑

𝑛+1
𝑖 (if 𝑖 < 𝑗) (7)

𝑑𝑛+2𝑖 ◦ 𝑠𝑛+1𝑗 = 𝑠𝑛𝑗−1 ◦ 𝑑
𝑛+1
𝑖 (if 𝑖 < 𝑗) (8)

𝑑𝑛+1𝑗 ◦ 𝑠𝑛𝑗 = id[𝑛] (9)
𝑑𝑛+1𝑗+1 ◦ 𝑠

𝑛
𝑗 = id[𝑛] (10)

𝑑𝑛+2𝑖 ◦ 𝑠𝑛+1𝑗 = 𝑠𝑛𝑗 ◦ 𝑑
𝑛+1
𝑖−1 (if 𝑖 > 𝑗 + 1) (11)

𝑠𝑛+1𝑖 ◦ 𝑠𝑛𝑗 = 𝑠𝑛+1𝑗+1 ◦ 𝑠
𝑛
𝑖 (if 𝑖 ≤ 𝑗). (12)

Here the 𝑠∗∗ are the degree increasing maps in the diagram and the 𝑑∗∗ are the degree decreasing ones, where the upper
index is the degree of the source object and the lower index is the “height” in the stack of all maps with the same source
and target. We call the 𝑠∗∗ degeneracy maps of 𝑋 and the 𝑑∗∗ the face maps of 𝑋. In this point of view on simplicial
objects, a morphism𝑋 → 𝑌 is a sequence of morphisms𝑋𝑘 → 𝑌𝑘 in 𝖢 which intertwine the face and degeneracy maps
of 𝑋 with the face and degeneracy maps of 𝑌 . This is formally similar to the definition of connective chain complex,
which is also a sequence of objects with structure maps and where a morphism between such is a degreewise morphism
intertwining the structure maps. In fact, if 𝖢 is abelian (or even just 𝖠𝖻-enriched) we can extract a connective chain
complex of objects of 𝖢 from a simplicial object 𝑋 of 𝖢.
Definition 3.8. Let 𝖠 be a category whose Hom-sets are abelian groups and where composition is ℤ-bilinear. Given
a simplicial object 𝑋 of 𝖠 the alternating face map complex of 𝑋 is a nonnegatively graded chain complex 𝐶 with
𝐶𝑛 = 𝑋𝑛 and differential 𝜕𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−1 defined by

𝜕𝑛 =
𝑛
∑

𝑗=0
(−1)𝑗𝑑𝑛𝑖 .

This defines a functor 𝑠𝖠 → Ch+(𝖠) which is the identity on underlying ℕ-graded objects.
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Exercise: Use the simplicial identities to prove 𝜕𝑛−1 ◦ 𝜕𝑛 = 0 for any 𝑛 > 1.

For example, if 𝑆 ∶ Δop → 𝖲𝖾𝗍 is a simplicial set then we can postcompose 𝑆 with the free abelian group functor
𝖲𝖾𝗍 → 𝖠𝖻 to obtain a simplicial abelian group. When 𝑆 = Sing(𝑋) for a topological space𝑋, the alternating face map
complex of this resulting simplicial abelian group is the singular chain complex of 𝑋. This demonstrates how natural
constructions on simplicial sets can take us to the category of simplicial objects in another category. But 𝗌𝗌𝖾𝗍 is special;
we’ve seen that it has a universal property in terms of extending functors defined on Δ, but also 𝑠𝖲𝖾𝗍 is just a very nice
category in its own right. Limits and colimits in functor categories are computed in the target category, so 𝗌𝖲𝖾𝗍 has all
small limits and colimits and these can be explicitly described by the formulas

(

colim
𝑖

𝑆 𝑖
)

𝑛
= colim

𝑖
(𝑆 𝑖)𝑛

(

lim
𝑖
𝑆 𝑖

)

𝑛
= lim

𝑖
(𝑆 𝑖)𝑛.

Furthermore the 𝑖th face/degeneracy map of the (co)limit is the (co)limit of the 𝑖th face/degeneracy map. Since the
property of being an epi/monomorphism can be restated as a certain square being cocartesian/cartesian, an epimorphism
of simplicial sets is a map which is surjective in each degree and a monomorphism of simplicial sets is a map which is
injective in each degree. We can even do things like talk about an equivalence relation on a simplicial set 𝑆, meaning
a simplicial subset of 𝑆 × 𝑆 which is degreewise an equivalence relation, and take quotients by these which have the
correct universal property. The category 𝑠𝖲𝖾𝗍 is a Grothendieck topos (of presheaf type!). One consequence of this is
that 𝑠𝖲𝖾𝗍 is cartesian closed, meaning that for any simplicial set 𝑆 the product −× 𝑆 has a right adjoint. Or stated in a
more exciting way, we can talk about the simplicial set of morphisms between two simplicial sets! For simplicial sets
𝑆, 𝑇 we wish to define a new simplicial set Hom(𝑆, 𝑇 ) such that Hom𝑠𝖲𝖾𝗍(𝑅 × 𝑆, 𝑇 ) ≅ Hom𝑠𝖲𝖾𝗍(𝑅,Hom(𝑆, 𝑇 )) for
any 𝑅 (in a suitably natural way). Then taking 𝑅 = Δ[𝑛] we’re forced to conclude

Hom(𝑆, 𝑇 )𝑛 ≅ Hom𝑠𝖲𝖾𝗍(Δ[𝑛],Hom(𝑆, 𝑇 )) ≅ Hom𝑠𝖲𝖾𝗍(Δ[𝑛] × 𝑆, 𝑇 )

and so we might as well define Hom(𝑆, 𝑇 )𝑛 = Hom𝑠𝖲𝖾𝗍(Δ[𝑛] × 𝑆, 𝑇 ). Note this expression is Hom𝑠𝖲𝖾𝗍(𝑦(−) × 𝑆, 𝑇 )applied to the object [𝑛] of 𝗌𝗌𝖾𝗍, so we can get the full functorial structure of the simplicial set by defining
Hom(𝑆, 𝑇 ) = Hom𝑠𝖲𝖾𝗍(𝑦(−) × 𝑆, 𝑇 ).

Via the adjunction between product and internal Hom we can define things like an “evaluation map” Hom(𝑆, 𝑇 )×𝑆 →
𝑇 (in fact this is the counit of the adjunction). This is one way that simplicial sets are nicer than topological spaces;
for general topological spaces the function space won’t have nice properties, and even if we restrict to some nicer
subcategory of 𝖳𝗈𝗉 (e.g. compactly generated weak hausdorff spaces) we’ll have to modify the usual definition of
the product of two spaces to get the categorical product. Also, even the function space between two one-dimensional
spaces is going to be infinite dimensional, while exponentials of “small” simplicial sets will still be fairly “small”.

Back to section 3
We give one more example of a family of simplicial sets and then move on to homotopy theory. This family once again
comes from a nerve-realization adjunction: the category Δ is defined as a subcategory of 𝖯𝗈𝗌 (the category of posets)
and 𝖯𝗈𝗌 embeds in 𝖢𝖺𝗍, the category of small categories. So we have a functor Δ → 𝖢𝖺𝗍 sending [𝑛] to the category

[0] → [1] → … → [𝑛].

We will also denote this category by [𝑛].
Definition 3.9. The nerve of a small category 𝖢 is the simplicial set 𝑁(𝖢)𝑛 = Fun([𝑛],𝖢), and taking the nerve is a
right adjoint functor.
Note that a functor [𝑛] → 𝖢, i.e. an 𝑛-simplex of the nerve of 𝖢, is really just a chain of 𝑛 end-to-end (or “composable”)
morphisms in 𝖢. For 𝑛 = 0 this degenerates to say𝑁(𝖢)0 is the set of objects of 𝖢, and for 𝑛 = 1 it says𝑁(𝖢)1 is the set
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of morphisms of 𝖢. If we work out what the degneracy and face maps look like from this perspective, it turns out that
𝑑01 , 𝑑

0
0 ∶ 𝑁(𝖢)1 → 𝑁(𝖢)0 are the source and target functions from arrows to objects and 𝑠00 ∶ 𝑁(𝖢)0 → 𝑁(𝖢)1 sends

an object to its associated identity map. In higher degrees, 𝑑𝑛0 and 𝑑𝑛𝑛 just drop the first or last morphism in the sequence
while an “inner” face map 𝑑𝑛𝑖 ∶ 𝑁(𝖢)𝑛 → 𝑁(𝖢)𝑛−1 for 0 < 𝑖 < 𝑛 composes the 𝑖th and (𝑖 + 1)st morphism in a chain.
The degeneracy maps 𝑠𝑛𝑖 ∶ 𝑁(𝖢)𝑛 → 𝑁(𝖢)𝑛+1 insert identity maps. More precisely, given a chain 𝐟 = (𝑓1,… , 𝑓𝑛)

𝑥0
𝑓1
→ 𝑥1 → ⋯ → 𝑥𝑛−1

𝑓𝑛
→ 𝑥𝑛

the chain 𝑑𝑛𝑖 (𝐟 ) is
𝑥0

𝑓1
→ 𝑥1 → ⋯ → 𝑥𝑖−1

𝑓𝑖+1 ◦ 𝑓𝑖
→ 𝑥𝑖+1 → ⋯ → 𝑥𝑛−1

𝑓𝑛
→ 𝑥𝑛

while the chain 𝑠𝑛𝑖 (𝐟 ) is

𝑥0
𝑓1
→ 𝑥1 → ⋯ → 𝑥𝑖−1

𝑓𝑖
→ 𝑥𝑖

id𝑥𝑖
→ 𝑥𝑖

𝑓𝑖+1
→ 𝑥𝑖+1 → ⋯ → 𝑥𝑛−1

𝑓𝑛
→ 𝑥𝑛.

In the case that 𝖢 is a one object groupoid with finitely many morphisms, i.e. a finite group 𝐺, the space |𝑁(𝐺)|
is a classifying space 𝐵𝐺 for principal 𝐺-bundles. I.e., for any sufficiently nice space 𝑋 homotopy classes of maps
𝑋 → |𝑁(𝐺)| are in natural bijection with the isomorphism classes of principal bundles on 𝑋. There is a close
connection between the group cohomology of 𝐺 and sheaf cohomology of the classifying space of 𝐺 (for a 𝐺-module
𝑀 with trivial 𝐺-action, the group cohomology of 𝐺 with coefficients in 𝑀 is isomorphic to the singular cohomology
of 𝐵𝐺 with coefficients in 𝑀). The simplicial set 𝑁(𝐺) is also easier to describe than the case of a general category,
even if𝐺 is just a monoid and not a group, because all morphisms are composable. So𝑁(𝐺)𝑛 can be identified with𝐺𝑛
and the face maps either delete the first/last element of a tuple or multiply adjacent inner elements, while the degeneracy
maps insert the identity of 𝐺 in a suitable position.

This analysis of the face/degeneracy maps in particular tells us that 𝑁(𝖢) includes all the data that the category 𝖢.
The 0 and 1-simplices tell us the sets of objects and arrows, the degree 0 degeneracy tells us the identity morphism, and
the face map 𝑑21 is the composition operation on pairs of composable arrows.S Since a morphism 𝑓 ∶ 𝑁(𝖢) → 𝑁(𝖣)
must commute with the face and degeneracy maps of the nerve, in fact 𝑓0, 𝑓1 define a functor 𝖢 → 𝖣. So𝑁 is not just a
functor from categories to simplicial sets, it is an embedding of categories (i.e., is fully faithful)! Additionally since𝑁
preserves products (it is a right adjoint), and the natural map 𝑁(Fun(𝖢,𝖣)) → Hom(𝑁(𝖢)𝑁(𝖣)) is an isomorphism.
To give an example, we can identify Δ[1] × Δ[1] with the poset having Hasse diagram

(0, 1) (1, 1)

(0, 0) (1, 0).

4 Homotopy of simplicial sets
It can sometimes be helpful to think of Sing(𝑋) as the archetypal simplicial set. That is, we think of a simplicial set𝑆 as
encoding a space and an element 𝜎 ∈ 𝑆𝑛 as an 𝑛-dimensional simplex within that space (but one which might be highly
degenerate). This perspective is enabled by the Yoneda lemma: for any simplicial 𝑆 we have a natural isomorphism
𝑆𝑛 ≅ Hom𝑠𝖲𝖾𝗍(Δ[𝑛], 𝑆). Under this perspective, a face map 𝑑𝑛𝑖 ∶ 𝑆𝑛 → 𝑆𝑛−1 is literally sending a simplex to its 𝑖th
face and a degeneracy map 𝑠𝑛𝑖 ∶ 𝑆𝑛 → 𝑆𝑛+1 just relabels an 𝑛-simplex as a degnerate simplex of higher dimension. Of
course the simplices in an arbitrary simplicial set are not as well behaved as the simplices that make up a simplicial
complex; by considering the behavior Sing(𝑋) one sees that in general a simplex is not determined by its faces and that
the faces of a simplex do not need to be distinct. In fact, due to the presence of degeneracy maps, for any nonempty
simplicial set and any 𝑖 there is a simplex whose 𝑖th and (𝑖 + 1)st faces are equal.

However, thinking of an arbitrary simplicial set as behaving like Sing(𝑋) can also be dangerous. Continuous maps
are very flexible and morphisms of simplicial sets are not (that was our whole motivation for defining simplicial sets!).
If we try to think of a simplicial set geometrically, e.g. if we define it by drawing a picture, it may have deceptively few
simplices. Compare the “interval” Δ[1], equipped with its basepoints 𝛿11 , 𝛿10 ∶ Δ[0] → Δ[1], to the topological interval
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𝐼 = [0, 1] ≅ |Δ[1]|, with its basepoints 𝑥0, 𝑥1 ∶ {∗} → 𝐼 . In 𝖳𝗈𝗉 we have a commutative diagram
{∗}

{∗} 𝐼

{∗} 𝐼 𝐼

𝑥0
𝑥1 𝑓

𝑔 ⌟

𝑥1

𝑥0

𝑥0

𝑥1

where the map 𝑓 compresses 𝐼 into the right half subinterval and the map 𝑔 compresses 𝐼 into the left half subin-
terval, and the square inside this diagram is cocartesian. In essence this is saying that 𝐼 is a fractal: you can bisect
it into two copies of itself. We then have a natural bijection Hom𝖳𝗈𝗉(𝐼,𝑋) → Hom𝖳𝗈𝗉(𝐼,𝑋) ×𝑋 Hom𝖳𝗈𝗉(𝐼,𝑋) for
a topological space 𝑋, where the maps Hom𝖳𝗈𝗉(𝐼,𝑋) → 𝑋 we’re taking a pullback with respect to spit out the
initial and terminal endpoints of a path. Invertibility of this map is why we can concatenate paths in a topological
space (and since homotopies are the same as paths in the function space, at least for nice enough spaces, this is also
why homotopy of maps is an equivalence relation). This entire story breaks down horribly for the Δ[1]. The set
Hom𝑠𝖲𝖾𝗍(Δ[1],Δ[1]) ≅ HomΔ([1], [1]) has exactly three elements: the identity, the constant map at the first vertex of
Δ[1], and the constant map at the second vertex of Δ[1]. Our interest in simplicial sets is that they are more combina-
torial, more discrete, but this means Δ[1] has no hope of being a fractal. We do still have a functor 𝑠𝖲𝖾𝗍 → 𝖲𝖾𝗍 sending
a simplicial set 𝑋 to the set of “end to end” paths in 𝑋, i.e. 𝑋 ↦ 𝑋1 ×𝑋0

𝑋1, and this is corepresented by the pushout
of Δ[1] with itself over Δ[1], as in 𝖳𝗈𝗉. But this pushout is the horn Λ2

1, not Δ[1].
Because of this we’re going to need to restrict our attention to some subclass of simplicial sets which is better suited

for doing homotopy theory. What desiderata do we have for this class of homotopically nicer simplicial sets? Well,
hopefully we should be able to define the fundamental group of these, or thinking more categorically the fundamen-
tal groupoid. In particular the relation of being connected by a path (i.e. being isomorphic within the fundamental
groupoid) should be an equivalence relation on vertices. For any simplicial set 𝑆 we can define a relation 𝑣 ∼ 𝑤 on
vertices 𝑣,𝑤 ∈ 𝑆0 to mean there exists an edge 𝑒 ∈ 𝑆1 such that 𝑑11 (𝑒) = 𝑣 and 𝑑11 (𝑒) = 𝑤. As we’ve been intimating,
this relation will not be an equivalence relation for an arbitrary 𝑆.

Exercise: Let 𝑒0, 𝑒1,… , 𝑒𝑛 denote the vertices of Δ[𝑛]. Show that 𝑒𝑖 ∼ 𝑒𝑗 if and only if 𝑗 = 𝑖 or 𝑗 = 𝑖 + 1.

The exercise above gives examples where∼ fails to be both symmetric and transitive. But it will always be reflexive,
due to the presence of degenerate simplices. That is, for any 𝑣 ∈ 𝑆0 we have an edge 𝑒 = 𝑠00(𝑣) ∈ 𝑆1 satisfying both
𝑑11 (𝑒) = 𝑣 and 𝑑11 (𝑒) = 𝑣, hence 𝑣 ∼ 𝑣. So our first desideratum is that ∼ should be transitive on 𝑆, i.e. elements
of 𝑆1 should somehow be concatenable. There’s not going to be an actual concatenation operation 𝑆1 ×𝑆0 𝑆1 → 𝑆1,
due to the differences between Δ[1] and the topological interval we described earlier. To figure out the right notion
of concatenation for paths in a simplicial set we’re going to return to topological spaces and analyze concatenation of
paths in these more carefully. For a topological space 𝑋 and paths 𝑝, 𝑞 ∶ 𝐼 → 𝑋 in 𝑋 with 𝑞(0) = 𝑝(1) we can define
their concatenation by the formula

(𝑝 ∙ 𝑞)(𝑡) =

{

𝑝(2𝑡) if 𝑡 ≤ 0.5
𝑞(2𝑡 − 1) if 𝑡 ≥ 0.5.

This is a concatenation of 𝑝 and 𝑞 in the sense that im(𝑝 ∙ 𝑞) = im 𝑝 ∪ im 𝑞, but of course paths (even injective ones)
have more information than just their images. In topology a path is a parameterized curve, and the restriction of 𝑝 ∙ 𝑞
to [0, 0.5] isn’t going to be exactly the same as 𝑝 because it has twice the velocity! Of course we don’t really care about
the velocity of a path, or particularly care about a parameterization at all, for the purpose of doing homotopy theory.
Any nice reparameterization of a path (e.g. by precomposing with an orientation preserving homeomorphism of the
interval) will not change the path-homotopy class. So our definition of 𝑝 ∙ 𝑞 above is very very noncanonical, we could
just as easily have defined it by e.g.

(𝑝 ∙′ 𝑞)(𝑡) =

{

𝑝
(

3
2 𝑡
)

if 𝑡 ≤ 2
3

𝑞(3𝑡 − 2) if 𝑡 ≥ 2
3 .
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And of course, the operation 𝑝 ∙ 𝑞 is not associative. If we had another path 𝑟 ∶ 𝐼 → 𝑋 with 𝑟(0) = 𝑞(1) then we could
concatenate the triple 𝑝, 𝑞, 𝑟 in two different ways, either (𝑝 ∙ 𝑞) ∙ 𝑟 or 𝑝 ∙ (𝑞 ∙ 𝑟). Visually these are

𝑝 𝑞 𝑟

(𝑝 ∙ 𝑞) ∙ 𝑟

𝑝 𝑞 𝑟

𝑝 ∙ (𝑞 ∙ 𝑟)

This isn’t a failure of our specific definition of ∙, the operation ∙′ isn’t associative either. There’s just no way to define
a binary concatenation operation on paths which both represents the correct class in the fundamental groupoid (i.e. is
path-homotopic to 𝑝 ∙ 𝑞) and is strictly associative. Of course, the two concatenations (𝑝 ∙ 𝑞) ∙ 𝑟 and 𝑝 ∙ (𝑞 ∙ 𝑟) are path-
homotopic to eachother. This is the reason why multiplication in the fundamental group (or more properly composition
in the fundamental groupoid) is associative! If we want to be homotopically unbiased, given two paths 𝑝, 𝑞 in 𝑋 with
𝑝(1) = 𝑞(0) what we should say is that a concatenation of 𝑝 and 𝑞 is a path 𝑟 in 𝑋 equipped with a path-homotopy
between 𝑝 ∙𝑞 and 𝑟. We can even state this condition without privileging the concatenation 𝑝 ∙𝑞 by asking for a triangle
shaped homotopy in 𝑋, i.e. a map 𝐻 ∶ Δ2 → 𝑋 whose restrictions to the edges of Δ2 are 𝑝, 𝑞, and 𝑟. This definition
has a clear generalization to simplicial sets: given edges 𝑝, 𝑞 ∈ 𝑆1 with 𝑢 = 𝑑11 (𝑝), 𝑣 = 𝑑10 (𝑝) = 𝑑11 (𝑞), 𝑤 = 𝑑10 (𝑞) a
concatenation of 𝑝 and 𝑞 is an edge 𝑟 ∈ 𝑆1 and a 2-simplex 𝐻 ∈ 𝑆2 such that 𝑑22 (𝐻) = 𝑝, 𝑑20 (𝐻) = 𝑞, and 𝑑21 (𝐻) = 𝑟.

𝐻

𝑤

𝑢 𝑣

𝑟

𝑝

𝑞

We can encode the pair end-to-end edges 𝑝, 𝑞 as a map 𝑓 ∶ Λ2
1 → 𝑆 and then 2-simplices 𝐻 with 𝑑22 (𝐻) = 𝑝 and

𝑑20 (𝐻) = 𝑞 correspond under the yoneda lemma to maps 𝑔 ∶ Δ[2] → 𝑋 making the diagram

Λ2
1 𝑆

Δ[2]

𝑓

𝑔

commute. So a sufficient condition for ∼ to be a transitive relation on 𝑆0 is that the dashed arrow always exists in
a diagram as above. If we want ∼ to be symmetric then any edge in 𝑆 needs to be somehow invertible. With our
understanding that degenerate 1-cells are like constant loops and concatenation of paths is defined by lifting diagrams
as above there’s an easy definition of inverses. For a path 𝑝 ∈ 𝑆1 with initial vertex 𝑣 = 𝑑11 (𝑝) and terminal vertex
𝑤 = 𝑑10 (𝑝) a right6 inverse of 𝑝 should be some 𝑞 ∈ 𝑆1 with 𝑑11 (𝑞) = 𝑤 and 𝑑10 (𝑞) = 𝑣 and such that 𝑠00(𝑣) is a
concatenation of 𝑝 and 𝑞. That is, a right inverse of 𝑝 is an edge 𝑞 ∈ 𝑆1 such that there exists a 2-simplex𝐻 ∈ 𝑆2 with
𝑑22 (𝐻) = 𝑝, 𝑑20 (𝐻) = 𝑞, and 𝑑21 (𝐻) = 𝑠00(𝑣). When drawing simplices inside of a simplicial set it’s common to use the
symbol = to denote a degnerate edge; with that convention we can depict this situation as

𝐻

𝑣

𝑣 𝑤𝑝

𝑞

Phrased another way, 𝑝 is right invertible iff there is a 2-simplex Δ[2] → 𝑆 which has 01 edge 𝑝 and 02 edge 𝜎00 (𝑣). For
6Note that the order of arguments in path concatenation is opposite the order of composition of functions/composition in a category (in our

conventions) and hence a “right inverse” of a path 𝑝 is a path 𝑞 such that travelling along 𝑝 and then 𝑞 gives the identity.
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any 𝑝 we can define a map 𝐿𝑝 ∶ Λ2
0 → 𝑆 with 01 edge 𝑝 and 02 edge 𝜎00 (𝑣), and 𝑝 is right invertible iff in the diagram

Λ2
0 𝑆

Δ[2]

𝐿𝑝

there exists a dashed map making the triangle commute. There is an obvious dual notion of left invertibility, where
we define 𝑅𝑝 ∶ Λ2

2 → 𝑆 to have 12 edge 𝑝 and 02 edge 𝜎00 (𝑣), and existence of left inverses says this map can be
extended to a map Δ[2] → 𝑆 for any 𝑝. Either one of these assumptions is sufficient to ensure ∼ is symmetric, so we
could arbitrarily say a simplicial set is 𝑆 good for homotopy if any map Λ2

1 → 𝑆 has a filler and any map Λ2
0 → 𝑆 with

degenerate 02 edge has a filler (by “has a filler” we mean “can be extended to a map out of the 2-simplex”). Of course,
this is a terrible definition. It’s ugly (although many definitions for simplicial sets are), nonsymmetric (and not just in
appearance, these conditions are not strong enough to imply any horn Λ2

2 → 𝑆 with degenerate 02 edge has a filler),
and most critically it doesn’t say anything about the higher homotopy information of the space 𝑆 encodes.

In fact, this definition only gives us a good definition of 𝜋0(𝑆) = 𝑆∕ ∼. It’s not even strong enough to imply
Π1(𝑆) is a groupoid (or even that 𝜋1(𝑆, 𝑣) is a group for any vertex 𝑣 ∈ 𝑆0). Before we can (attempt to) define the
fundamental group(oid) we need a notion of homotopy of paths. We define this in sort of a silly way: for a path 𝑝 ∈ 𝑆1from 𝑣 = 𝑑11 (𝑝) to 𝑤 = 𝑑10 (𝑝) we say 𝑝 is homotopic to another path 𝑞 ∈ 𝑆1 iff 𝑞 is a concatenation of 𝑝 with 𝜎00 (𝑤).Certainly this should be true after passing to homotopy classes if 𝑝 and 𝑞 are homotopic, and if we can make a groupoid
out of homotopy clases of paths in which 𝜎00 (𝑥) is the identity at 𝑥 ∈ 𝑆0 then this relation should also imply 𝑝 and 𝑞
have the same homotopy class, i.e. are homotopic. But there is once again asymmetry! We could instead have defined
this relation by saying 𝑞 is a concatenation of 𝜎00 (𝑣) with 𝑝. And while reflexivity is clear (by applying an appropriate
degeneracy to 𝑝) both symmetry and transitivity are totally opaque. Well even if we figured out how to solve all of
these problems there would still be a fundamental issue. The group(oid) operation should be associative, which in our
language means that if we have end-to-end-paths 𝑝, 𝑞, 𝑟 ∈ 𝑆1, 𝑓 is a concatenation of 𝑝 and 𝑞, and 𝑓 ′ is a concatenation
of 𝑞 and 𝑟, any concatenation of 𝑓 with 𝑟 should be a concatenation of 𝑝 with 𝑓 ′ (and vice-versa). There is no way
to ensure this with just fillers of 2-horns. Essentially the issue is that the three edges 𝑝, 𝑞, 𝑟 want to live inside a three
dimensional simplex, not a 2d one. They naturally form the “spine” of Δ[3], as depicted below.

𝑝
𝑞

𝑟

0

1

2

3

Let 𝑔 be a concatenation of 𝑓 and 𝑟. We can then fill in the dashed arrows above and get the 1-skeleton of a tetrahedron.

𝑝
𝑞

𝑟

𝑓

𝑔

𝑓 ′0

1

2

3
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If 𝐴,𝐵, 𝐶 ∈ 𝑆2 are 2-simplices witnessing that 𝑓 is a concatenation of 𝑝, 𝑞, that 𝑓 ′ is a concatenation of 𝑞, 𝑟, and
that 𝑔 is a concatenation of 𝑓, 𝑟 (respectively) then we can fill this diagram in even further.

0

1

2

3

𝐴

𝐵
C

This picture can be interpreted as a single morphism Λ3
2 → 𝑆, encoding all our data 𝑝, 𝑞, 𝑟, 𝑓 , 𝑓 ′, 𝑔, 𝐴, 𝐵, 𝐶 . If we were

able to fill this in to a 3-simplex Δ[3] → 𝑆 then the filler of the missing face 013 would exhibit 𝑔 as a concatenation of
𝑓 ′ with 𝑝, which is exactly the associativity condition we wanted. In the dual situation where we have a concatenation
𝑔′ of 𝑝 with 𝑔 and construct a morphism Λ3

1 → 𝑆 the face 023 of a filling would exhibit 𝑔′ as a concatenation of 𝑓
with 𝑟. And in fact, filling 3-horns is sufficient for quite a lot of things to work out. The homotopy relation becomes
transitive, the “left-biased” and “right-biased” path-homotopy relations become equivalent, and concatenation of paths
is well defined and associative associative up to path-homotopy. Hence if 𝑆 has fillers for all in horns in dimensions
≤ 3 we have a well defined “fundamental groupoid” Π1(𝑆) with object set 𝑆0, morphisms path-homotopy classes
of paths, identity morphisms the degenerate 1-cells, and composition the (reversed) concatenation operation. This
definition is not quite good enough to do proper homotopy theory, though! We’re still missing necessary information
to define the higher homotopy groups. Similar to the situation when we were stuck one dimension lower, while these
assumptions are sufficient to ensure homotopy is an equivalence relation on paths it’s not enough to ensure there is
a way to concatenate homotopies themselves (in a manner well defined and associative up to 2-homotopy, etc). But
there’s a pretty clear generalization of what we’ve thought about to arbitrary dimensions.
Definition 4.1. A Kan complex is a simplicial set𝐾 such that for any 𝑛 > 0 and 0 ≤ 𝑖 ≤ 𝑛 all morphisms Λ𝑛𝑖 → 𝑋 can
be extended to a morphism Δ𝑛 → 𝑋. That is, there always exists a dashed arrow making the diagram below commute.

Λ𝑛𝑖 𝐾

Δ[𝑛]

Kan complexes are the simplicial sets with which it is suitable to do homotopy theory. One easy to define class of
Kan complexes are the simplicial sets of the form Sing(𝑋) for a topological space𝑋. This can be seen by the adjunction
|− | ⊣ Sing, which lets us restate the Kan lifting condition for Sing(𝑋) in terms of lifting continuous maps |Λ𝑛𝑖 | → 𝑋
to maps Δ𝑛 → 𝑋, and the fact that |Λ𝑛𝑖 | is a retract of Δ𝑛 in 𝖳𝗈𝗉.

There are two important variants on the definition of a Kan complex, called “weak Kan complexes” and “Kan
fibrations”. The first comes from the observation that our proof of transitivity of path connectedness only used fillers
for the horn Λ2

1, and the proof of associativity only used fillers for Λ3
1 and Λ3

2. In fact this is also true for the (omitted)
proofs of transitivity of homotopy, well definedness of concatenation up to homotopy, and the coincidence of left and
right biased homotopy. The only place we need to fill “outer horns” instead of “inner horns” is to establish the existence
of left/right inverses of edges in a Kan complex. Thus the “fundamental groupoid” construction goes through if we’re
only able to fill the “inner horns” Λ2

1, Λ3
1, and Λ3

2; but this won’t generally be a groupoid, only a category.
Definition 4.2. A weak Kan complex is a simplicial set 𝑄 such that for any 0 < 𝑖 < 𝑛 all morphisms Λ𝑛𝑖 → 𝑋 can be
extended to a morphism Δ𝑛 → 𝑋. That is, there always exists a dashed arrow making the diagram below commute.

Λ𝑛𝑖 𝑄

Δ[𝑛]
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For the purpose of modelling the classical homotopy theory of topological spaces the “directedness” of simplicial
sets seems like a deficiency, e.g. we have no symmetry operation Δ[1] → Δ[1] interchanging the vertices and so no
uniform way of defining inverses across all Kan complexes. But it’s precisely this directedness that allows us to encode
categories as simplicial sets via the nerve construction, as we saw earlier. And while the nerve of a category is only a
Kan complex if that category is a groupoid, the nerve is always a weak Kan complex! Weak Kan complexes are not
intended to model homotopy types but infinity categories, which are inherently directed. In fact weak Kan complexes
have many other names: quasicategories, ∞-categories, (∞, 1)-categories, or even “homotopy theories”.

The other direction of generalization is to consider families of Kan complexes. The term family is used here in the
same sense as how a vector bundle is a family of vector spaces over the base, or how a morphism of schemes is the
family of its fibers. I.e., by a family of Kan complexes we mean some sort of morphism of simplicial sets 𝑓 ∶ 𝐸 → 𝐵
whose fibers {𝐸 ×𝐵 {𝑏}}𝑏∈𝐵0

are Kan complexes. But not all morphisms will do, just like how not every continuous
map with a vector space structure on all fibers is a vector bundle. We don’t just want to lift horns in each fiber separately
but have some sort of compatibility between the fillers, or even lift horns spread across many fibers.
Definition 4.3. A Kan fibration is a morphism of simplicial sets 𝑓 ∶ 𝐸 → 𝐵 such that for any 𝑛 > 0 and 0 ≤ 𝑖 ≤ 𝑛,
given any commutative square of the form

Λ𝑛𝑖 𝐸

Δ[𝑛] 𝐵

𝑓

there exists a dashed map making the square below commute
Λ𝑛𝑖 𝐸

Δ[𝑛] 𝐵.

𝑓

If 𝐸 = Sing(𝑋), 𝐵 = Sing(𝑌 ), and 𝑓 = Sing(𝑞) for a continuous map 𝑞 ∶ 𝑋 → 𝑌 then 𝑓 is a Kan fibration if
and only if 𝑞 is a Serre fibration, which is once again an application of the | − | ⊣ Sing adjunction as well as carefully
chosing a homeomorphism [0, 1] × Δ𝑛−1 ≅ Δ𝑛 that restricts to a homeomorphism between {0} × Δ𝑛−1 and |Λ𝑛𝑖 |.
Theorem 4.4. There is a model structure on the category 𝑠𝖲𝖾𝗍, called the Quillen model structure, in which the cofi-
brations are the monomorphisms, the fibrations are the Kan fibrations, and the weak equivalences are the morphisms
which become weak equivalences of topological spaces after taking geometric realization. This model structure is cofi-
brantly generated, with generating cofibrations the boundary inclusions 𝜕Δ𝑛 ↪ Δ𝑛 and generating acyclic cofibrations
the horn inclusions Λ𝑛𝑖 ↪ Δ𝑛.

Proof. We will not give a proof here, simply highlight some approaches one could take and give exposition. There are
a couple things to note about the theorem as stated:

• Our definition of weak equivalences is somewhat “cheap” in that it requires us to relate things back to topological
spaces and a primitive notion of homotopy there, rather than giving a purely combinatorial definition of the
model structure (which would be preferable, since simplicial sets are purely combinatorial objects). We could
define weak equivalences in simplicial sets as in topolgoical spaces, using a combinatorial definition of homotopy
groups—finding such a combinatorial definition of homotopy groups was Kan’s original motivation for the theory
of simplicial sets—but as we discussed above, even the naively defined fundamental group or pointed set of path
components of a simplicial set at a vertex behaves poorly unless that simplicial set is a Kan complex. So what
we might do is define a (functorial) fibrant replacement 𝐹 ∶ 𝑠𝖲𝖾𝗍 → 𝑠𝖲𝖾𝗍 and then declare a map 𝜑 to be a weak
equivalence iff its 𝐹 (𝜑) is a weak equivalence between Kan complexes. In fact, the “cheap” definition arises in
this way with replacement functor 𝐹 (𝑋) = Sing(|𝑋|).

• In Quillen’s original paper he took a fully combinatorial approach, in fact defining the model structure on 𝖳𝗈𝗉
as transferred from the one on 𝑠𝖲𝖾𝗍. Key to his approach is the notion of a “minimal fibration”.

• There is no particularly simple definition of acyclic cofibrations in this model structure other than the class gener-
ated by horn inclusions under standard model category operations (transfinite composition, pushouts, coproducts,
retracts, etc). They are called “anodyne maps”.
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• It is not immediately obvious that monomorphisms in 𝑠𝖲𝖾𝗍 are generated boundary inclusions, but also not that
hard to prove. The intuitive picture is that for any simplicial subset 𝑌 ⊆ 𝑋, the set 𝑋 can be obtained from 𝑌
by “attaching cells” (i.e., iteratively taking pushouts against 𝜕Δ𝑛 → Δ𝑛). We can, roughly, take this property
(cofibrations = monomorphisms) as the fundamental input to the construction of the model structure and generate
the rest of the data to be compatible with it. This is workable because 𝑠𝖲𝖾𝗍 is a very nice category (a “topos”)
and furthermore Δ is a very nice category (a “test category”). This approach fits the Quillen model structure into
Grothendieck’s program of “test categories” (developed by Cisinski). After setting up the broader theory one
obtains a model structure on 𝑠𝖲𝖾𝗍 rather foramlly, and the only nontrivial work to be done is showing that the
fibrations generated in this way coincide with the Kan fibrations. Cisinski’s construction uses a combinatorially
defined fibrant replacement functor over Sing(| ∙ |), known as “Kan’s Ex∞ functor”. This functor is much better
behaved and more explicit than Sing(| ∙ |), all it requires is the notion of (barycentric) subdivision and sequential
colimits of simplicial sets. The Cisinski model structure approach is nice in that it generalizes to give a Quillen
model structures on cubical sets, gives the Joyal model structure on simplicial sets (whose fibrant objects are weal
Kan complexes rather than Kan complexes), gives with slight modification dendroidal sets (these model higher
operads), and in general shows how to produce a model structure for presheaves on a category of “geometric
shapes” like simplices, cubes, trees, etc.

• In Quillen’s original approach the the notion of a minimal fibration brings in a dependence on the axiom of
choice and the small object argument produces a fairly nonconstructive factorization. Cisinski’s approach is more
constructive, in particular it gives explicit factorizations using the Ex∞ functor. But there is still a dependence
on the law of the excluded middle squirreled away in the fact that, classically, any inclusion of sets 𝑖 ∶ 𝐴 → 𝐵
exhibits𝐵 as the coproduct of𝐴 and𝐵⧵𝐴; if we take this instead as a property of the map 𝑖, a so-called decidable
inclusion, then the combinatorial construction of the model structure goes through with little change. For some
this is philosophically satisfying, but more practically it allows us to do homotopy theory with simplicial objects
in a category of not-quite-sets. For example, this construction gives an model structure on the category of
simplicial objects of Sh(𝑋) for any topological space 𝑋.

5 Derived Functors, Quillen Adjunctions, & Transferred Model Structures
Let 𝖬 be a model category with cofibrations , fibrations  , and weak equivalences  . Recall that Ho(𝖬) = 𝖬[−1].
The weak equivalences of 𝖬 describe some sort of "homotopy theory" of the objects of 𝖬 while cofibrations and fibra-
tions are extra data used to control the localization at the weak equivalences (really the ∞-localization!). (Co)fibrations
are also used to make sense of "homotopical constructions" in 𝖬, eg mapping cones, suspension, loop spaces. They’re
not the main thing and there’s some redundancy in the data: either the class of cofibrations or of fibrations determines
the other ( = LLP( ∩) and  = RLP( ∩)). Perhaps the most important sort of "homotopical constructions" is
that of a derived functor. The theory of derived functors really only requires a model structure on the domain category
of a functor, we can work with a weaker notion for the codomain category.
Definition 5.1. A category with weak equivalences is a pair (𝖭,) where 𝖭 is a category and  a class of maps in 𝖭
which contains all isomorphisms and satisfies the 2-out-of-3 property.

Obviously a model category is such a thing, and we extend the notation Ho(𝖭) = 𝖭[−1] to the case where 𝖭 is
merely a category equipped with weak equivalences. Suppose𝑀 is a model categories, (𝖭,) a category equipped with
weak equivalences, and 𝐹 ∶𝑀 → 𝑁 a functor. A derived functor of 𝐹 is supposed to be some sort of "extension" of 𝐹
to a functor Ho(𝑀) → Ho(𝑁). The existence of an extension in the usual sense, i.e. a functor 𝐹 ∶ Ho(𝑀) → Ho(𝑁)
making the square

𝑀 𝑁

Ho(𝑀) Ho(𝑁)

𝐹

𝐹

commute up to natural isomorphism, is equivalent to the statement that 𝐹 preserves weak equivalences (if 𝐹 does so
then the derived functor exists by the universal property of localization). Category theorists have a more flexible notion
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of extending a functor, called a (pointwise) Kan extension, and while this does give a good notion of a derived functor
we choose to set it aside for the moment in favor of a more explicit analysis of when and how a functor can be derived.

Let 𝖬𝑓 be the full subcategory of 𝖬 on fibrant objects and 𝑓 =  ∩𝖬𝑓 the class of weak equivalences between
fibrant objects; define 𝖬𝑐 ,𝑐 similarly but for cofibrant. The inclusion functor 𝑖 ∶ 𝖬𝑓 → 𝖬 satisfies 𝑖(𝑓 ) ⊆  ,
hence it induces a functor 𝖬𝑓 [−

𝑓 1] → Ho(𝖬). This latter functor is essentially surjective due to the existence of
fibrant replacement. Less obvious is that it’s fully faithful, but the factorization axioms of a model category give us
enough control over localization to see that it is and hence is an equivalence of categories. Similarly𝖬𝑐 → 𝖬 induces an
equivalence 𝖬𝑐[−

𝑐 1] → Ho(𝖬). The punchline is that if 𝐹 ∶ 𝑀 → 𝑁 preserves weak equivalences between fibrant
objects then 𝐹 ◦ 𝑖 descends to the localizations, giving the right derived functor ℝ𝐹 ∶ Ho(𝖬) ≅ 𝖬𝑓 [−

𝑓 1] → Ho(𝖭)
of 𝐹 . Similarly if 𝐹 (𝑐) are all weak equivalences we get a left derived functor 𝕃𝐹 ∶ Ho(𝖬) ≅ 𝖬𝑐[−

𝑐 1] → Ho(𝖭).
Definition 5.2. Let 𝖬 be a model category and 𝖭 a category with a class of weak equivalences satisfying 2-out-of-3.
A functor 𝐹 ∶ 𝖬 → 𝖭 is left-derivable if it sends weak equivalences between cofibrant objects to weak equivalences.
Dually 𝐹 is right-derivable if it sends weak equivalences between fibrant objects to weak equivalences.

This is how (total) derived functors in the sense of homological algebra fit into the framework of model categories.
Any additive functor preserves chain homotopy, and weak equivalences between projective/injective complexes are
automatically chain homotopy equivalences. The “resolution” point of view comes from the fact that cofibrant replace-
ment (i.e. projective resolution) defines a functor Ho(𝖬) → 𝖬𝑐[−

𝑐 1] quasi-inverse to the inclusion. In fact right
or left exactness isn’t needed to derive the functor or to get a long exact sequence, we just need it to make sense of
that LES as an extension of a one sided exact sequence. What general conditions ensure that a functor preserves weak
equivalences between fibrant/cofibrant objects (in the nonabelian context)? The key tool is “Ken Brown’s Lemma”.
Lemma 5.3. Let 𝖬 be a model category and 𝖭 a category equipped with weak equivalences. If a functor 𝐹 ∶ 𝖬 → 𝖭
sends trivial fibrations between fibrant objects to weak equivalences then it is right-derivable, 𝐹 sends arbitrary weak
equivalences between fibrant objects to weak equivalences.

Proof. Let 𝑤 ∶ 𝑋 → 𝑌 be a weak equivalence between fibrant objects. Factor the map (id𝑋 , 𝑤) ∶ 𝑋 → 𝑋 × 𝑌 into
a trivial cofibration 𝑖 ∶ 𝑋 → 𝑍 followed by a fibration 𝑝 ∶ 𝑍 → 𝑋 × 𝑌 . The projections 𝜋1 ∶ 𝑋 × 𝑌 → 𝑋 and
𝜋2 ∶ 𝑋 × 𝑌 → 𝑌 are both fibrations since they are the base changes of the fibrations 𝑌 → 1, 𝑋 → 1 along eachother.
Let 𝑓 = 𝜋1 ◦ 𝑝 and 𝑔 = 𝜋2 ◦ 𝑝; note both 𝑓 and 𝑔 are fibrations (since they are both the composition of two fibrations).
Also 𝑓 ◦ 𝑖 = 𝜋1 ◦ (𝑝 ◦ 𝑖) = 𝜋1 ◦ (id𝑋 , 𝑤) = id𝑋 and 𝑔 ◦ 𝑖 = 𝜋2 ◦ (𝑝 ◦ 𝑖) = 𝜋2 ◦ (id𝑋 , 𝑤) = 𝑤 so in particular 𝑓 ◦ 𝑖 and
𝑔 ◦ 𝑖 are both weak equivalences. Since 𝑖 is a weak equivalence the 2-out-of-3 axiom in 𝖬 implies 𝑓 and 𝑔 are weak
equivalences, hence trivial fibrations, hence 𝐹 (𝑓 ) and 𝐹 (𝑔) are weak equivalences. The equation 𝑓 ◦ 𝑖 = id𝑋 also
implies 𝐹 (𝑓 ) ◦𝐹 (𝑖) = id𝐹 (𝑋), hence by 2-out-of-3 in 𝖭 the map 𝐹 (𝑖) is a weak equivalence. And finally the equation
𝑔 ◦ 𝑖 = 𝑤 implies 𝐹 (𝑤) is a composition of two weak equivalences and hence is a weak equivalence, as desired.

We have a good definition of “left-derivable” and “right-derivable” functors, and Lemma 5.3 gives a simpler crite-
rion for checking these conditions. But these functors don’t behave well when considered all together: since a “right-
derivable” functor doesn’t have to preserve fibrant objects, a composite of two right-derivable functors may fail to be
right-derivable.

The notions of derivability we’ve found do their job and ensure a functor is derivable, but they’re poorly suited
categorically. Part of this is the asymmetry in the definition, as they require the domain to have more structure than
they require of the codomain. Two left-derivable functors between model categories may not have left-derivable com-
position, as a left-derivable functor has no reason to send cofibrant objects to cofibrant objects. Taking a broader view,
while derivability is all well and good it doesn’t ask that a functor preserve as much structure as we might want for a
“homomorphism of model categories”.
Definition 5.4. Let 𝖬,𝖭 be model categories. A functor 𝐹 ∶ 𝖬 → 𝖭 is left-Quillen if it preserves cofibrancy of
objects, the class of cofibrations, and the class of trivial cofibrations. Dually 𝐹 is right-Quillen if it preserves fibrancy
of objects, the class of fibrations, and the class of trivial fibrations.
By Ken Brown’s Lemma, a left-Quillen functor is automatically left-derivable and a right-Quillen functor is automat-
ically right-derivable. Intuitively a left-Quillen functor preserves constructions in a model category that rely on the
“cofibration” part of the data while a right-Quillen functor preserves constructions in a model category that rely on
the “fibration” part of the data. Frequently it is assumed that a left-Quillen functor is cocontinuous and a right-Quillen
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functor is continuous; under this assumption (or the weaker one that initial/terminal objects are preserved) preserva-
tion of (co)fibrancy of objects follows from preservation of the class of (co)fibrations. Left and right Quillen functors
frequently come in adjoint pairs, called “Quillen adjunctions”. In some sense this is because of the following:
Lemma 5.5. Let 𝖬,𝖭 be model categories and 𝐹 ∶ 𝖬 ⇄ 𝖭 ∶𝐺 an adjunction. The following are equivalent:

(i) the left adjoint 𝐹 is left-Quillen,

(ii) the right adjoint 𝐺 is right-Quillen,

(iii) the left adjoint 𝐹 preserves cofibrations while the right adjoint 𝐺 preserves fibrations,

(iv) the left adjoint 𝐹 preserves trivial cofibrations while the right adjoint 𝐺 preserves trivial fibrations.

Proof. The key idea is that there is a correspondence between lifting problems of the left form in𝖬 and lifting problems
of the right form in 𝖭

𝑋 𝐺(𝑋′) 𝐹 (𝑋) 𝑋′

𝑌 𝐺(𝑌 ′) 𝐹 (𝑌 ) 𝑌 ′.

𝑠♯

𝑡♯
𝑝 𝐺(𝑞)

𝑠♭

𝑡♭
𝐹 (𝑝) 𝑞

Here the flat-sharp notation says e.g. 𝑠♯ and 𝑠♭ correspond under the bijection Hom𝖬(𝑋,𝐺(𝑋′)) ≅ Hom𝖭(𝐹 (𝑋), 𝑋′).
Not only is there a correspondence between problems, but also solutions, i.e. between commuting diagrams

𝑋 𝐺(𝑋′) 𝐹 (𝑋) 𝑋′

𝑌 𝐺(𝑌 ′) 𝐹 (𝑌 ) 𝑌 ′.

𝑠♯

𝑡♯
𝑝 𝐺(𝑞)

𝑠♭

𝑡♭
𝐹 (𝑝) 𝑞ℎ♯ ℎ♭

It is straightforward to show from this that if 𝖬 is endowed with classes of maps (,) such that  = LLP() and
RLP() =  and 𝖭 an analogous pair (′,′) then for an adjunction 𝐹 ⊣ 𝐺 we have 𝐹 () ⊆ ′ iff  ⊇ 𝐺(′).
Lemma 5.6. Let 𝐹 ∶ 𝖬 ⇄ 𝖭 ∶𝐺 be an Quillen adjunction. Then there is an adjunction 𝕃𝐹 ⊣ ℝ𝐺.

Proof. In fact, the adjunction doesn’t need to be Quillen for the conclusion of the theorem, any adjunction of a left
derivable and right derivable functor will do. Maltsiniotis gave an elegant proof using only formal properties of abso-
lute/pointwise kan extensions. But the proof we present here requires these hypotheses.

For 𝑋 ∈ Obj(𝖬) cofibrant and 𝑌 ∈ Obj(𝖭) fibrant there’s a bijection Hom𝖬(𝑋,𝐺(𝑌 )) ≅ Hom𝖭(𝐹 (𝑋), 𝑌 ). Ad-
ditionally, HomHo(𝖬)(𝑋,𝐺(𝑌 )) can be identified with the quotient of Hom𝖬(𝑋,𝐺(𝑌 )) by the homotopy relation on
maps (which is an equivalence relation, since we’re mapping from a cofibrant object to a fibrant one) and similarly
HomHo(𝖭)(𝐹 (𝑋), 𝑌 ) can be identified with the quotient of Hom𝖭(𝐹 (𝑋), 𝑌 ) by the homotopy relation on maps. Fur-
thermore because 𝑋 is cofibrant we can identify (𝕃𝐹 )(𝑋) = 𝑋 because 𝑌 is fibrant we can identify (ℝ𝐺)(𝑌 ) =
𝑌 . We then just need to descend the bijection Hom𝖬(𝑋,𝐺(𝑌 )) ≅ Hom𝖭(𝐹 (𝑋), 𝑌 ) to a bijection of quotient sets
HomHo(𝖬)(𝑋, (ℝ𝐺)(𝑌 )) ≅ HomHo(𝖭)((𝕃𝐹 )(𝑋), 𝑌 ), i.e. show that the original bijection respects homotopy of maps.
And for this we can use either the fact that 𝐹 sends good cylinder objects of 𝑋 to good cylinder objects of 𝐹 (𝑋) or the
dual result for 𝐺, 𝑌 .
This proof doesn’t just give an abstract adjunction, it tells us that the adjunct of a representative of a map is the rep-
resentative of the adjunct of the map, when mapping from an 𝖬-cofibrant object to a 𝖭-fibrant object. For general
derivable adjunctions there is still a nice relationship between the derived adjunction and the original adjunction, but
it must be stated in terms of the unit and counit.

We now turn our eye to the problem of transferring a model structure on one category across an adjunction to
another. Model structures are famously hard to construct, so it would be nice if we could do the hard work of verifying
the existence of a single model structure (e.g. simplicial sets or chain complexes) and then bootstrap lots of others
from that. The model case we have in mind is transferring the model structure on simplicial sets to a model structure
on simplicial objects in some “algebraic” category 𝖠. The term “algebraic” here should be understood in the sense
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of universal algebra, so we include the cases of groups, abelian groups, rings, lie algebras, modules over a ring, etc,
but not fields. The issue with fields is that we can’t produce a “free field” on some set, whereas it’s possible to do so
for all other examples. So 𝖠 should at least come with an adjunction 𝐹 ∶ 𝖲𝖾𝗍 ⇄ 𝖠 ∶𝑈 . Furthermore, free algebras
have a sort of “finiteness” property to them, in that they are generated under finitely many applications of the algebraic
operations by the basis elements. This is why 𝑘[[𝑋]] is not free on 𝑋, as infinitary operations are required to generate
the ring. One way we could capture this finiteness property is that for any 𝑡 ∈ 𝐹 (𝑋) there is some finite subset𝑋′ ⊆ 𝑋
with inclusion 𝑖 ∶ 𝑋′ → 𝑋 such that 𝑡 ∈ im𝐹 (𝑖). So 𝑈 (𝐹 (𝑋)) should be the union of im𝑈 (𝐹 (𝑖)) over all inclusions
𝑖 of finite sets. We can view this as 𝑈 preserving a certain sort of colimit: the set 𝑋 is a directed union of all its finite
subsets, and this colimit will be preserves by the left adjoint 𝐹 , and we’re then asking for it to be preserved again by
𝑈 . It turns out in fact that “monadic” adjunctions 𝐹 ∶ 𝖲𝖾𝗍 ⇄ 𝖠 ∶𝑈 where the forgetful functor 𝑈 preserves directed
colimits are exactly the same as (multi-sorted) varieties of algebras in the sense of universal algebra. And such an
adjunction lifts to an adjunction 𝐹 ′ ∶ 𝑠𝖲𝖾𝗍 ⇄ 𝑠𝖠 ∶𝑈 ′ where the right adjoint 𝑈 ′ still preserves directed colimits,
because colimits in functor categories are pointwise and the functors 𝐹 ′, 𝑈 ′ are defined pointwise. So we take this as
the basis for our theory of transfer.
Definition 5.7. Let 𝖭 be a model category and 𝖬 an ordinary category, with an adjunction 𝐹 ∶ 𝖭 ⇄ 𝖬 ∶𝑈 . The right
transferred model structure on 𝖬, if it exists, is the model structure in which a map 𝜑 is a weak equivalence iff 𝑈 (𝜑)
is a weak equivalence in 𝖭 and a map 𝑝 is a fibration iff 𝑈 (𝑝) is a fibration in 𝖭.
The reader may wonder why we pull back fibrations instead of cofibrations. The answer is that this adjunction “wants
to be” a Quillen adjunction, in which case the fibrations should push forward to fibrations along the right adjoint. Or
more generally, in passing lifting problems across an adjunction we should be taking the image of the right vertical
map along the right adjoint. But there’s also a good algebraic motivation for this. In categories of algebras, surjections
are very well behaved in that they present the codomain as a quotient of the domain. Injections are less well behaved,
e.g. subrings of Noetherian rings need not be Noetherian. In a model structure we often think of the fibrations as
“nice surjections” and cofibrations as “nice injections”, although this is not really true in general, so it makes sense for
fibrations to take primacy over cofibrations. We could also consider the dual problem of pulling back a model structure
along a left adjoint, and while the definition goes through the theory is not as nice (in some sense because we prioritize
cofibrantly generated model structures over fibrantly generated ones).

Note that the data of fibrations and weak equivalences totally determines the model structure (if it exists) since the
cofibrations are then determined as the maps with the left lifting property with respect to the trivial fibrations. However
there are two possible definitions of a trivial cofibration in the situation of a transferred model structure, it could either
be a map with the left lifting property with respect to all fibrations or as a map which is both a cofibration and a weak
equivalence. We refer to the first sort of map as “anodyne” and the second as a “cofibration weak equivalence”. If
the transferred model structure exists then these two must coincide, but that is not the case in general. Anodyne maps
are in particular cofibrations, since trivial fibrations are in particular fibrations, but they have no reason to be weak
equivalences in general.
Example 5.8. Let 𝑘 be a field of positive characteristic. Then there is an adjunction Sym∶ Ch+(𝑘) ⇄ 𝖢𝖣𝖦𝖠+(𝑘) ∶𝑈and we’ve seen how to define a model structure on the codomain. If transferred model structure on 𝖢𝖣𝖦𝖠+(𝑘) existed
then this would be a Quillen adjunction, hence the left adjoint would preserve weak equivalences between cofibrant
objects. That is to say, if 𝜑 ∶ 𝑃 → 𝑄 were a quasi-isomorphism between complexes of projectives then 𝑈 (Sym(𝜑))
would have to still be a weak equivalence. But Sym does not even send the generating acyclic cofibration 𝑖 ∶ 0 → 𝐷(𝑛)
to a weak equivalence. Since Sym(0) ≅ 𝑘 (in degree 0), to see that Sym(𝑖) is not a weak equivalence it suffices to
exhibit
It is a fundamental problem that anodyne maps need not be weak equivalences, and one that requires insight of the
problem at hand to solve. But it turns out that this is the “only” obstruction, at least when the model category being
transferred from is nice and the adjunction is “finitary” in the sense described earlier.
Lemma 5.9. Let 𝖭 be a cofibrantly generated model category and 𝖬 an ordinary category with all small colimits.
Given an adjunction 𝐹 ∶ 𝖭 ⇄ 𝖬 ∶𝑈 , if 𝑈 preserves directed colimits then any morphism in 𝖬 factors as (1) a
cofibration followed by a trivial fibration and as (2) an anodyne map followed by a fibration.

Proof. In this theorem statement, the terms “fibration” and “trivial fibration” refer to the morphisms of𝖬which become
such after applying𝑈 while “cofibration” means a map with the left lifting property with respect to all trivial fibrations.
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Let 𝐼 be a set of generating cofibrations and 𝐽 a set of generating acyclic cofibrations for the model structure on
𝖭, both assumed to have small domain7. By the correspondence between lifting problems across the adjunction, each
element of 𝐹 (𝐼) has the left lifting property with respect to the trivial fibrations of 𝖬, i.e. each element of 𝐹 (𝐼) is a
cofibration. Similarly each element of 𝐹 (𝐽 ) is anodyne. Furthermore 𝐹 preserves small objects (because smallness
is about mapping out to directed colimits and 𝑈 preserves directed colimits) and so 𝐹 (𝐼), 𝐹 (𝐽 ) are sets of morphisms
with small domain. Thus the small object argument applies to them and produces a factorization of any map into (1’)
something in the saturation of 𝐹 (𝐼) followed by something with the right lifting property with respect to 𝐹 (𝐼) and (2’)
something in the saturation of 𝐹 (𝐽 ) followed by something with the right lifting property with respect to 𝐹 (𝐽 ). Since
anodyne maps and cofibrations are defined in terms of lifting properties, the saturations of 𝐹 (𝐼) and 𝐹 (𝐽 ) consist only
of cofibrations and of anodyne maps. And finally a map 𝑔 in 𝖬 has the right lifting property with respect to 𝐹 (𝐼) if
and only if 𝑈 (𝑔) has the right lifting property with respect to 𝐼 if and only if 𝑈 (𝑔) is a trivial fibration if and only if 𝑔
is a trivial fibration, and similarly for 𝐹 (𝐽 ), meaning (1’) and (2’) are the desired factorizations.
Theorem 5.10. Let 𝖭 be a model category and 𝖬 an ordinary category, with an adjunction 𝐹 ∶ 𝖭 ⇄ 𝖬 ∶𝑈 . The
right transferred model structure on 𝖬 exists if and only if every anodyme morphism of 𝖬 is a weak equivalence and
every morphism in 𝖬 factors as (1) a cofibration followed by a trivial fibration and (2) an anodyne map followed by a
fibration.

Proof. We omit the “only if” direction. Suppose that anodyne maps are weak equivalences and that factorizations of
type (1) and (2) exist for every map. All the model category axioms hold either by passing along the adjunction, by
definition of our classes of maps, or by an assumption, as long as the anodyne morphisms and cofibration weak equiva-
lences coincide. Anodyne maps are automatically cofibrations, and we have assumed that they are weak equivalences.
Given a cofibration weak equivalence 𝑖, factor it as 𝑖 = 𝑝 ◦ 𝑗 where 𝑗 is anodyne and 𝑝 is a fibration. By the 2-out-of-3
property, 𝑝 must be a weak equivalence. And since 𝑖 is a cofibration this implies 𝑖 has the left lifting property against
𝑝. Applying this property to a suitable diagram constructed from the factorization 𝑖 = 𝑝 ◦ 𝑗 shows 𝑖 is a retract of 𝑗,
and since being anodyne is a lifting property this implies 𝑖 is anodyne.

7This might be a slightly stronger assumption than cofibrantly generated, I’m not sure.
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